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Abstract—In this paper we present DALI, a distributed,
collaborative multi-agent Traffic Signal Timing system (TST)
for highly dynamic traffic conditions. In DALI, intersection
controllers are augmented with software agents which col-
laboratively adapt signal timings by considering the feedback
of all controller agents that may be affected by a change.
The model is based on a real-world TST and is intended
to be deployed with minimal changes to the infrastructure.
DALI has been validated on a simulated model of the City of
Richardson, Texas, comprising 128 signalized intersections. The
experimental results show that it outperforms the conventional
traffic operation modes as well as an RL-based TST in highly
dynamic scenarios.

I. INTRODUCTION

Modern Traffic Signal Timing systems (TST) rely upon
the detection of traffic conditions in real-time to determine
effective signal settings. Generally, TSTs define traffic signal
planning as an optimization problem where solutions are
timing plans which meet objectives such as delay and stop
minimization.

Several TSTs tackle the traffic signal timing optimization
problem at the network level [19], [18]. These TSTs are
fully centralized and, although reliable and robust, do not
perform well in highly dynamic traffic conditions [5]. An-
other class of TSTs aims at finding optimal solutions on
isolated intersections. These systems make use of a variety of
techniques such as dynamic programming [16], game theory
[4], [10], neural networks [24], [9], fuzzy logic [7], [11], [17],
and Reinforcement-Learning (RL) [20], [3], [2], [14]. The
main drawback of isolated intersection signal planning is the
lack of interactions between intersection controllers which
leads to sub-optimal solutions at the traffic system-level.
A third category of TSTs aims at solving the optimization
problem for a subset of intersections [15], [5], [8], [23], [22].
Most systems in this category consider interactions among
controllers but limit coordination to neighboring junctions.

The application of the agent paradigm to traffic signal
timing has been of interest to Multi-Agent System (MAS)
researchers for some time. Distribution, autonomy and coor-
dination are agent properties that are naturally suited for the
traffic domain. In this paper, we present a distributed, collab-
orative multi-agent-based TST that we call DALI (Distributed
Agent-based traffic LIghts). In DALI, intersection controllers

are augmented with software agents which collaboratively
adapt signal timings by considering the feedback of all
controller agents that may be affected by a change. The
proposed approach is intended to be deployed in the City of
Richardson with minimal changes to the traffic infrastructure.
As such, our model is based on parameters and data currently
used by the city, and does not make assumption on the
availability of data not obtainable in the field.

The paper is organized as follows: the next section gives
an overview of related works. Section IV presents the agent
algorithms and Section VI discusses the experimental results
based on a simulation model of the City of Richardson.

II. RELATED WORK

Numerous authors have studied the use of agents in TST, and
comprehensive reviews have been published in the literature
[6], [26]. In this section we discuss the approaches that
compare best to DALI, i.e., the collaborative agent-based
TSTs which aim at defining signal timing plans for a subset
of intersections. Most published systems in this category
use Reinforcement Learning (RL) with Q-learning algorithms
[26]. They are either hierarchical or fully distributed.

[5], [1] propose hierarchical models where intersection
controller agents are organized in small groups each super-
vised by a higher level regional agent. Agents at both levels
use RL. Communications occur only between agents in a
group and their regional agent whose role is to recommend
actions. Controller agents make use of local information
for their learning process, whereas regional agents use the
group’s information. Given the large state-action space that
needs to be considered by a regional agent, the signal
timing problem is simplified in [5]. In order to address the
dimensionality problem, [1] proposes the use of a linear
function approximation method. Systems in this category
have been tested on small simulated grid networks.

In fully Distributed, Collaborative multi-Agent-based
(DCA) approaches, controller agents use their local informa-
tion as well as information learned from their direct neighbors
(e.g., state, action, reward, Q-value) via direct or indirect
communication to select an action (e.g., shorten or lengthen
the split). The actions may result in traffic phases that are
out-of-order or even skipped when traffic conditions are
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unpredictable. MARLIN-ATSC [15] discusses an RL model
where agents select actions based on predictions of their
neighboring agents’ action selection. MARLIN-ATSC was
tested on a simulated model of Lower Downtown Toronto
comprising 59 intersections. In [23], each controller agent
uses Q-learning with either a greedy approach or an ex-
ploration strategy using information obtained from its direct
neighbors. The approach was tested on a 20 junction network
of a simulated network model of Bangalore, India. [21] uses a
max-plus RL approach where a controller agent learns about
its neighboring agents’ locally optimized payoffs rather than
the traditional rewards, and then determines the maximum
value for the sum of these payoffs. [13] proposes a multi-
policy RL-based technique which allows multiple traffic
optimization goals simultaneously. The approach was tested
on a simulated model of Cork city comprising 6 intersections.

Although the agent-based TSTs in this category have
proven to enhance the traffic system performance under
nominal conditions, they have limitations: their application
to highly dynamic traffic conditions has not been thoroughly
evaluated and some argue that the difficulties that may
arise with learning speed and performance require that the
proposed RL models be extended [26]. In addition, in the
proposed DCA systems, agents consider information learned
from only their direct neighbors. Moreover, most systems
make use of parameters that cannot be easily obtained in
the field (e.g., total cumulative delay, queue length, etc.).
Finally, the largest realistic simulated network that was built
for validation purposes includes 62 intersections [12].

In this paper we present DALI, a fully distributed, col-
laborative multi-agent based traffic signal timing system for
highly dynamic traffic environments. DALI extends existing
DCA systems as follows: a) it uses a dynamic, collaborative
agent-based strategy to handle unexpected traffic events in
real-time; b) agents consider the feedback of all agents that
may be affected by a change; c) DALI only considers traffic
data readily available in the field; and d) it was validated on a
model of the City of Richardson’s traffic network comprising
1365 road segments and 128 intersections.

III. THE CITY OF RICHARDSON’S TST

The City of Richardson is located 15 miles north of down-
town Dallas and is part of the Dallas-Fort Worth Metroplex.
The city has four major highways, eleven major and 6 minor
arterial roads and 128 intersections with traffic signals.

The 128 SCATS-based intersection control computers
(traffic controllers) are mounted in cabinets at intersections.
They run Linux on an ATC-compliant motherboard offering
speed, performance and multi-thread capabilities. A central
traffic management center communicates with the traffic
controllers via a WiMAX wireless network operating in the
licensed 4.9 GHz public safety band with about 2.5 GB/s to-
tal throughput. Controller-to-Controller communication links
exist but are not used in the current traffic system. Traffic
controllers operate in various modes. During the day, a
variety of pre-timed plans designed to address variable traffic
patterns are executed based on traffic conditions. Past mid-

night, controllers operate either in pre-timed, semi-actuated
or fully-actuated modes depending on the road types and the
existence of a detection system. Vehicles at an intersection
are detected through inductive loops.

The City of Richardson maintains a traffic count program
which conducts scheduled counts on major arterial roads as
well as collector streets, i.e., roads which move traffic from
local streets to arterial roads. The traffic counts are used for
a variety of purposes including the definition of coordinated
traffic signal timing along arterial streets.

In order to define traffic signal timing plans, traffic engi-
neers assign values to cycle length, offset and splits based
on historical data. Given that inductive loops are positioned
a few feet from the stop bar, the vehicles that can be
realistically detected are those that cross the inductive loop
area. With the inductive loop technology a complete vehicle
count on a road segment is not possible. In addition, except
for the induction loop area, the vehicle positions on road
segments cannot be obtained.

IV. AGENT ALGORITHMS

In DALI, agents communicate with each other through di-
rect links and do not have a supervising agent to oversee
coordination. Agents have knowledge of the traffic network
topology. They receive information about the incoming traffic
flow from their neighboring controllers and determine the
outgoing traffic flow based on the data sensed by their
inductive loops (see Figure 1). Intersections are assigned
weights to indicate their criticality in the traffic network.

A. Model Definition

Set Definitions
T = {t1, .., ti} is the set of time-stamps at which traffic
conditions are evaluated.
C = {c1, .., cn} is the set of intersection controllers. An
intersection controller cn is assigned a weight ω which
corresponds to its priority in the road network.
Rd = {rc1,c2 , .., rcm,cn} is the set of road segments between
intersections. A road segment rcm,cn is defined in terms
attributes such as length l, speed limit sl and a set of lanes
LNrcm,cn

= {ln1..lnq}.
LTrcm,cn .lnw

is the set of lanes that are accessible from
rcm,cn .lnw
LFrcm,cn .lnw is the set of lanes that have access to
rcm,cn .lnw
PHcn = {phcn,1, ..phcn,k} is the set of phases for the
intersection controlled by cn. A phase phcn,k is defined in
terms of γ, the split time, ν, the minimum green time, η,
the maximum green time, ε, the yellow time, ξ, the red time
and LNphcn,k

, the set of lanes it applies to.

Function Definitions
p(rcm,cn .lnw, rcn,cp .lnu) is the probability that a vehicle
exiting lane w in road segment rcm,cn enters lane u in
road segment rcn,cp . This probability is computed by traffic
engineers based on historical data.
p(rcm,cn , rcm,cn .lnw) is the probability that a vehicle which
enters road segment rcm,cn , leaves it from lane w. This
probability is also computed by traffic engineers.
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Fig. 1. cn determines rateOut and receives rateIn from cm.

rateOut(rcm,cn .lnw) is the rate of vehicles (per second) that
can leave the intersection through lane w of road segment
rcm,cn within the current split time.
rateIn(ti, rcm,cn) is the rate of vehicles (per second) that
enter road segment rcm,cn in the evaluation interval τ that
ends at time ti
ξti,rcm,cn .lnw is the traffic throughput for lane rcm,cn .lnw,
i.e., the ratio of vehicles getting in and leaving the lane. It is
defined as:

ξti,rcm,cn .lnw =

rateIn(ti, rcm,cn)

rateOut(ti, rcm,cn .lnw)
× p(rcm,cn , rcm,cn .lnw)

B. Algorithms

In this section we give a detailed description of the algorithms
executed by the intersection controller agents. Due to space
limitation, we restrict our discussion to the main scenario. A
detailed discussion of special cases is given in [25].

Algorithm 1 Controller Congestion Reduction
Require: PHcn , ti

1: for all phcn,k ∈ PHcn do
2: EvaluateTraffic(phcn,k, ti : TotalInstCong)
3: if TotalInstCong

b > d then
4: GenerateP lan(phcn,k, ti : plannew)
5: RequestForEvaluation(phcn,k, plannew :

Ψcn)
6: if Ψcn > h then
7: ExecuteP lan(plannew)
8: end if
9: end if

10: end for
11: if ReceiveRequestForEvaluation(cp, κrcp,cn

, κphcq,j
)

then
12: ComputeLevelOfAgreement(κrcp,cn

, κphcq,j
)

13: end if
14: if ReceiveRequestForExecution(cp, plannew) then
15: AdjustT iming(plannew)
16: end if

1) Detecting Congestion: Intersection controller cn con-
tinuously evaluates the traffic state by executing Algorithm 1
to determine if a re-timing operation is necessary. As shown
in Figure 1, at each ti, cn receives rateIn (detected through
its neighbors’ induction loops) and determines rateOut. At
time ti, controller cn computes Congti,phcn,k

as the average
throughput for the set of lanes controlled by phcn,k.

Congti,phcn,k =
∑

rcm,cn .lnw∈LNphcn,k

ξti,rcm,cn .lnw

Algorithm 2 Evaluate Traffic
Require: PHcn , ti

1: for all phcn,k ∈ PHcn do
2: TotalInstCong ← 0
3: for j = 0 to b do
4: δ = 0
5: for each rcm,cn .lnw ∈ LNphcn,k

do
6: δ ← ξti−j,rcm,cn .lnw + δ
7: end for
8: Congti,phcn,k

← δ
9: if Congti,phcn,k

≥ a then
10: TotalInstCong ← TotalInstCong + 1
11: \* TotalInstCong Represent Sum Over In-

stantCongestion
12: end if
13: end for
14: end for

Fig. 2. PercentCong of phase phcn,k .

If Congti,phcn,k
is greater than threshold a, then cn

considers that there is an instant congestion and assigns the
value of 1 to InstantCongestion defined as:

InstantCongestionti,phcn,k =

{
1 Congti,phcn,k ≥ a

0 Congti,phcn,k < a

It proceeds by considering the past b evaluation cycles to
determine the percentage of evaluation cycles in which the
phase was congested (see Figure 2). This is defined as:

PercentCongti,phcn,k =∑i
j=i−b InstantCongestiontj ,phcn,k

b
× 100

If PercentCongti,phcn,k
> d then the road lanes

controlled by phcn,k are considered to be congested.

To illustrate the various steps we use the traffic scenario
illustrated in Figure 3. c2 has four incoming roads each
with two lanes. The four phases for c2’s intersection are
{phc2,1, phc2,2, phc2,3, phc2,4}. These phases apply as fol-
lows: phc2,1 for rc1,c2 , phc2,2 for rc4,c2 , phc2,3 for rc8,c2
and phc2,4 for rc5,c2 . The phases have the following attribute
values. γ = 40, ν = 20, η = 60, ε = 5, ξ = 5. A number
of constants have been used in this example. Their values
are: a = 1, b = 50 and d = 80. In this example, c2
evaluates the status of its intersection at the time-stamp t6000.
It starts with phase, phc2,1 and calculates the average traffic
throughput Congt6000,phc2,1

for the set of road lanes that
phc2,1 controls. Given that rateOut(t6000, rc1,c2 .ln1) = 1,
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Fig. 3. Overview of the network in case study.

Fig. 4. Intersection assigned to c2.

p(rc1,c2 , rc1,c2 .ln1) = 0.8 and rateIn(t6000, rc1,c2) = 2.4,
the value of ξt6000,rc1,c2

.ln1
is:

ξt6000,rc1,c2
.ln1 = 2.4×0.8

1
= 1.92

For the sake of illustration, we assume that
Congt6000,phc2,1

= 1.31 which is greater than the threshold
a = 1. c2, then retrieve the calculated values of Cong
between the time stamps t5999 and t5950. We find that 43 of
them are greater than a. Therefore,

PercentCongt6000,phc2,1 = 43
50

× 100 > 80

Consequently, c2 detects a congestion on phase phc2,1
and deliberates to define a new plan.

2) Generate New Plan: The controller deliberates to de-
termine the value of a new split that will alleviate congestion
on phcn,k. This is achieved in step 7 in Algorithm 3. Value
of the new split is calculated as:

plannew.phase.γ =

plancur.phase.γ × (e+

∑i
j=i−ν Congtj ,phcn,k

ν
× f)

e and f are coefficients that can be calibrated. They
regulate the influence of the traffic throughput and the current
split time for the new split time. Values of cycle length
and offset change in the new split. If plannew.phase.γ is

Algorithm 3 Generate Plan
Require: phcn,k, ti
Ensure: plannew

1: plannew.phase← phcn,k
2: χ← 0
3: for j = i− ν to i do
4: χ← χ+ Congtj ,phcn,k

5: end for
6: χ← χ

ν
7: plannew.phase.γ ← plancur.phase.γ ∗ (e+ χ ∗ f)
8: if plannew.phase.γ > phcn,k.γMAX then
9: plannew.phase.γ ← phcn,k.γMAX

10: end if

greater than the maximum allowed split time γMAX defined
for phase phcn,k as:

phcn,k.γMAX = phcn,k.η + phcn,k.ε+ phcn,k.ξ

then its value is set to phcn,k.γMAX (step 9).

In the example above, the average of Cong for phase phc2,1
in the last ν = 20 evaluation cycle is 1.23. Given that e = 1
and f = 0.2, c2 defines a new plan for phc2,1, and computes
plannew.phase.γ as:

plannew.phase.γ = 40 × (1 + 1.23 × 0.2) ≈ 50

Therefore, c2 determines that it needs to increase phc2,1.γ
by ten seconds.

3) Request For Evaluation: cn determines the impact of
executing the new plan on the neighboring intersections in
terms of κ, the increment in vehicle rate. κrcm,cn .lnw

is
calculated for road lane rcm,cn .lnw as:

κrcm,cn .lnw =
rateOut(ti, rcm,cn .lnw)

plannew.phase.γ

×(plannew.phase.γ − plancur.phase.γ)

κphcn,k
for a phase phcn,k is defined as the sum of

κrcm,cn .lnw
for the set of lanes controlled by the phase

(Algorithm 4, Step 3). In the same way, κrcn,cp
for a road

segment rcn,cp , is the sum of κrcn,cp .lnw (Algorithm 4, Step
10). Controller cn proceeds by sending plannew, κrcn,cp

and
κphcn,k

to each adjacent controller cp for evaluation. κphcn,k

corresponds to the increment in the rate of vehicles that exits
the road lanes controlled by phcn,k, in case the new plan is
to be executed. κrcn,cp

corresponds to the portion of κphcn,k

that goes to road segment rcn,cp . In the illustrative example,
c2 calculates κrc1,c2

.ln1 as:

κrc1,c2
.ln1 =

1 × (50 − 40)

50
= 0.25

Having κrc1,c2
.ln2

= 0.3, κphc2,1
takes the value of 0.55.

c2 then calculates the effect of executing a new plan
on its neighboring intersections including c4. Assuming
p(rc1,c2 .ln1, rc2,c4 .ln1) = 0.7, p(rc1,c2 .ln1, rc2,c4 .ln2) = 0,
p(rc1,c2 .ln2, rc2,c4 .ln1) = 0.2
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and p(rc1,c2 .ln2, rc2,c4 .ln2) = 0, κrc2,c4
will be calculated

as:

κrc2,c4
= 0.25 × 0.7 + 0.25 × 0 + 0.3 × 0.2 + 0.3 × 0

= 0.32

c2 then sends a request for evaluation to c4 with κrc2,c4
=

0.32 and κphc2,1
= 0.55. This means that by executing

plannew, an additional 0.55 vehicle per seconds (vps) will
leave phc2,1, and out of the 0.55 (vps), 0.32 (vps) will enter
rc2,c4 .

Algorithm 4 Request for Evaluation
Require: phcn,k, plannew
Ensure: Ψcn

1: κphcn,k
← 0

2: for each rcm,cn .lnw in LNphcn,k
do

3: κphcn,k
← κphcn,k

+ κrcm,cn .lnw

4: end for
5: Ψcn ← 0
6: for each accessible neighbor cp , in parallel do
7: κrcn,cp

← 0
8: for rcm,cn .lnw ∈ LNphcn,k

do
9: for rcn,cp .lnu ∈ LTrcm,cn .lnw

do
10: κrcn,cp

← κrcn,cp
+

(p(rcm,cn .lnw, rcn,cp .lnu)× κrcm,cn .lnw)
11: end for
12: end for
13: Send(cp, κrcn,cp

, κphcn,k
)

14: Receive(cp, Ψcp )
15: Ψcn ← Ψcn + Ψcp

16: end for

4) Compute Level Of Agreement: Upon receipt of a new
plan, cn’s neighboring controller cp computes κrcp,cq

for
each of its neighbor controllers cq and request that they
each evaluate the plan. The process propagates until at a
given intersection, either the value of κ is smaller than
threshold g or the plan reaches the road network boundaries.
Following this step and recursively, each controller sends
back its level of agreement in terms of a real number Ψ,
to the controller from which it has received the request.
An intermediate controller, cp, calculates Ψcp based on the
existing traffic throughput, its priority ω and the ratio of
the received additional vehicle throughput. x, y and z are
coefficients that calibrate the influence of variables in Ψ.
After receiving the level of agreement from all affected
neighbors, cp adds them to its own level of agreement Ψcp

and sends the value back to cn. The final decision is made
based on the value of Ψcn representing the opinion of all
affected controllers in the network.

In the illustrative example, given
that rateOut(t6000, rc2,c4 .ln1) = 1,
rateOut(t6000, rc2,c4 .ln2) = 0.3, rateIn(t6000, rc2,c4) =
1.2, p(rc2,c4 , rc2,c4 .ln1) = 0.8 and p(rc2,c4 , rc2,c4 .ln2) =

Algorithm 5 Compute Level Of Agreement
Require: κrcn,cp

, κphcn,k

Ensure: Ψcp

1: Ψcp ← 0
2: for rcn,cp .lnu ∈ LNrcn,cp

do
3: Ψcp ← Ψcp + x × ω(cp) ×

κrcn,cp

κphcn,k

× (y − z ×
(κrcn,cp

+rateIn(ti,rcn,cp ) ×p(rcn,cp ,rcn,cp .lnu)

rateOut(ti,rcn,cp .lnu)
)

4: end for
5: for each accessible neighbor cq from cp , in parallel

do
6: κrcp,cq

← 0
7: for rcn,cp .lnu ∈ LNrcn,cp

do
8: for rcp,cq .lnf ∈ LFrcn,cp .lnu

do
9: κrcn,cp

← κrcn,cp
+ p(rcn,cp , rcn,cp .lnu) ×

p(rcn,cp .lnu, rcp,cq .lnf )× κrcn,cp

10: end for
11: end for
12: if κrcn,cp

> g then
13: Send(cq , κrcn,cp

, κphcn,k
)

14: Receive(cq , Ψcq )
15: Ψcp ← Ψcp + Ψcq

16: end if
17: end for
18: Send(cn, Ψcp )

0.2, the value of Ψc4 is calculated as:

Ψc4 = 1.0 × 2.0 × 0.32

0.55
× ((1 − 1×

(0.32 + 1.2) × 0.8

1
) + (1 − 1 × (0.32 + 1.2) × 0.2

0.3
))

= −0.2

c4 calculates κ for c3, c7 and c9 and ask them to evaluate the
plan if κ is greater than threshold g. The result is added to
Ψc4 and sent back to c2. Upon receipt of Ψc4 , Ψc5 and Ψc8 ,
controller c2 calculates Ψ2. Given that h = 0, negative values
of Ψ are considered as a level of disagreement (Algorithm
1,Step 6). Having Ψ2 = 2.34, c2 executes the new plan and
announces the execution to all controllers in the network.

V. MATISSE

In this section we give a brief overview of MATISSE
3.0 (MultiAgent based TraffIc Safety Simulation systEm).
MATISSE 3.0 is a microscopic multi-agent based simulation
system for the specification and execution of simulation
scenarios for Agent-based intelligent Transportation Systems
(ATS).

MATISSE consists of three modules. The main constituent
is the MATISSE Simulation Module which includes three
subsystems. The Agent System creates and manages simu-
lated traffic agents. Due to the complexity of the simulated
agents and to enhance future extensiblity, agent types are
implemented as three separate platforms: 1) the Vehicle Plat-
form creates and manages vehicle agents; 2) the Intersection
Control Agent Platform creates and manages intersection
controller agents; and 3) the Zone Manager Platform creates
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Fig. 5. 2D visualization of Richardson’s Traffic Network.

and manages service and traffic manager agents. Communi-
cations between simulated agents within and across platforms
take place over the Agent Message Transport Service. The
Environment System maintains a detailed specification of
the traffic network topology. The Control and Visualization
Module renders 2D and 3D representations of the simulation,
and provides mechanisms for the user to interact with the
simulation and modify parameters at run-time.

MATISSE can simulate traffic networks taken directly
from Open Street Map. It uses advanced algorithms to auto-
matically generate missing information such as unknown road
types or traffic light locations. During the simulation, vehicles
enter and exit the simulation from entry and exit points. The
user can let MATISSE generate an initial normal distribution
or define their own vehicle distribution for preferred entry
and exit points.

Agents are equipped with sensors. They perceive and
communicate with agents located within their sensor range,
i.e., circle-of-influence for vehicle agents.

During the simulation, the user can modify the driver’s
level of distraction. This may dynamically introduce unex-
pected accidents and unpredicted traffic behavior.

VI. EXPERIMENTAL RESULTS

In this section, we discuss the evaluation of DALI with
respect to delay. Similar results were obtained for queue
length [25].

The experiments were run on a multicore PC (Intel Core
i7 X980 CPU (3.33GHz), 6.00 GB, 64-bit Windows 7). A
simulated model of the City of Richardson’s road network
was created in MATISSE. The model includes 1365 road
segments and the city’s 128 signalized intersections in
addition to the 965 non-signalized intersections. Figure 5
shows a 2-D representation of the traffic network. Tables I
and II summarize the types of signalized and non signalized
intersections, classified based on the number of incoming
and outgoing lanes.

Three simulation settings were run eight times for 86,400
simulation cycles representing a 24-hour time period. The
average delay for all vehicles was measured. In the first and

TABLE I
NUMBER OF SIGNALIZED INTERSECTION WITH VARIOUS INCOMING AND

OUTGOING LANES

Type 1× 1 1× 2 1× 3 2× 2 2× 3 3× 3

Count 0 4 8 18 29 69

TABLE II
NUMBER OF NON-SIGNALIZED INTERSECTION WITH VARIOUS

INCOMING AND OUTGOING LANES

Type 1× 1 1× 2 1× 3 2× 2 2× 3 3× 3

Count 533 241 175 16 0 0

second experiment, we use real-world data provided by the
City of Richardson to simulate regular traffic patterns with
and without accidents. In the third and fourth experiment
we simulate continuous random traffic patterns with and
without accidents. For all experiments, we compare the
efficiency of DALI with the SCATS-based system currently
in use in Richardson (SCATS-R), and a model of the
RL-based MARLIN-ATSC [15] (MARLIN-R). To decrease
the learning time of MARLIN agents, we initialized the
Q-values based on estimations derived from historical data
provided by the City of Richardson.

Experiment 1: Normal Traffic Conditions
In this experiment, we make use of the traffic data provided
by the City of Richardson to determine the number of
vehicles in the traffic network at any given time, as well as
their distribution in the network. This experiment is intended
to analyze the behavior of the three systems under nominal
traffic conditions.

As shown in Figure 6, between the times of 00:30 am
and 5:30 am DALI and SCATS-R perform at the same level
with respect to delay. This is due to the fact that during this
time period, traffic is very light and therefore DALI agents
do not perform any action. MARLIN-R agents perform
better (53% delay reduction) in this situation because of
their flexibility in changing the traffic phases at any time.
As we progress during the day (i.e., 6:30 am to 8:30 am)

Fig. 6. Average delay using traffic data from the City of Richardson
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Fig. 7. Average delay with accident in peak morning hours using real traffic
data

the traffic flow increases, and congestion is detected. DALI
agents naturally collaborate with one another to define and
implement timing plans that meet the network conditions.
As such, DALI performs significantly better than SCATS-R
(23% delay reduction). MARLIN-R performs slightly less
than DALI. The simulation shows that this is due to the
fact that MARLIN-R agents do not handle heavy traffic in
small network areas with a large number of intersections
efficiently. In those cases, MARLIN-R agents give the
right-of-way to vehicles without taking into account the
downstream roads which are congested.

Experiment 2: Normal Traffic Conditions With Accident
Figure (7) shows the performance of the systems when an
accident is triggered at run time, during normal morning
peak traffic. As expected, DALI handles the traffic much
better than SCATS-R (35% delay reduction). It is notable
that MARLIN-R agents are unable to control the congestion
created by the accident since they have no prior knowledge
of the unexpected traffic pattern. Similarly to Experiment 1,
the simulation shows that, rather than leading the vehicles
towards roads with lighter traffic, MARLIN-R agents send
vehicles to congested areas.

Experiment 3: Continuous Random Traffic Conditions
In this experiment, the number of vehicles during the simu-
lation remains constant but new vehicles are added randomly
while others randomly exit the traffic network. This experi-
ment is intended to illustrate random traffic patterns that are
unprecedented. The experiment was run with 100, 250, 500,
1000, 2000 and 3000 vehicles.

Figure (7) shows that when the traffic is light, MARLIN-R
agents perform (37%) better because they account for a
variable phasing sequence. They can extend the current
phase or switch to any other phase according to the changes
in traffic. On the other hand, SCATS-R controllers and
DALI agents execute a fixed phase sequence. Therefore,
all phases are executed even in cases where it is not
necessary. DALI and SCATS-R perform at the same level
in lighter traffic conditions because the controller agents
do not detect congestion and therefore, do not change the

Fig. 8. Average delay for random traffic patterns

Fig. 9. Average delay for random traffic patterns with accidents.

split. As the number of vehicles increases, DALI agents
start to detect congestion and collaborate with other agents
for retiming. The collaborative retiming procedure allows
DALI to perform better than SCATS. As the number of
vehicles increases, MARLIN-R still perform better than
SCATS-R. However, DALI do better. This is due to the fact
that MARLIN-R agents fail to handle heavy traffic in small,
condensed network areas.

Experiment 4: Continuous Random Traffic Conditions
with Accident
Figure (9) shows the performance of DALI, SCATS-R and
MARLIN-R in the extreme situation where an accident is
randomly triggered in unpredictable traffic conditions. When
the traffic is light, the three systems nearly act the same. As
traffic gets heavier, DALI operates better than the other two
(20% decrease in delay compared to SCATS-R and 12% de-
crease in delay compared to MARLIN-R). When the number
of vehicles reaches 3000, MARLIN-R operates worse that
SCATS-R (8% delay increase) because SCATS-R controllers
are committed to giving green signal to all movements in a
cycle whereas MARLIN-R agents lack experience in dealing
with new traffic conditions.

VII. CONCLUSION

In this paper we presented DALI, a distributed collaborative
multi-agent traffic signal timing (TST) system for highly

632



dynamic traffic conditions. DALI has been validated on a
simulated model of City of Richardson’s traffic network.
The experimental results show that the collaborative multi-
agent controllers outperforms the traditional SCATS-based
system currently used by the City of Richardson. While a
simulated model of MARLIN performs better than DALI in
stable traffic conditions with light to normal traffic, the RL-
based model does not operate efficiently in two settings: 1)
random traffic conditions and 2) nominal traffic conditions
with heavy traffic in condensed traffic network areas. Our
goal is to investigate the development of a hybrid model that
will integrate some RL in the DALI agents.

This work is a first step towards the implementation of
an agent-based TST for the City of Richardson. Before
the deployment of the first prototype, agent-to-agent com-
munication costs need to be assessed. Our assumption is
that, given that the currently deployed SCATS controllers
communicate through a WiMAX network with a speed of
up to 2.5 Gbps, direct agent communication may take less
than a tenth of a second, and communications for decision
making no more than a few seconds. Also, in its current form,
the proposed agent-based TST does not take pedestrians
into consideration. Given that close to 90% of Richardson’s
population commutes by either driving alone or carpooling,
it is reasonable to assume that current pedestrian signal
operations may not need to be modified. Nevertheless, we
plan to incorporate pedestrian signal timing in future versions
of our agent-based model.
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