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Abstract—1In this paper, we discuss collision avoidance for
Connected and Autonomous Vehicles (CAVs) on a highway.
CAVs are clustered into coalitions each managed by a leader.
Within a coalition, collision avoidance is addressed using a
Monte Carlo Tree Search (MCTS)-based approach. We propose
algorithms for collision avoidance across coalitions. After an
initial assessment of the impact of a potential collision on an
affected coalition, leaders cooperate to define action plans that
are free of intra-coalition and inter-coalition conflicts. The al-
gorithms were validated through extensive realistic simulations
in a multi-agent-based traffic simulator. Experimental results
discuss the reliability and scalability of the algorithms for
coalitions of different sizes. Moreover, we present an analysis
to select the optimal coalition size and the optimal number of
coalitions given a total number of CAVs.

I. INTRODUCTION

We see an increased number of accidents with the in-
creased road traffic. Most of these accidents or collisions
take place due to human error. Automating the vehicles on
the road can help solve this problem. Connected Automated
Vehicles (CAVs) are capable of sensing their surroundings
using a variety of sensors and communicating with each other
to avoid collisions in an emergency situation. In many on-
road situations, a CAV may not be able to avoid collisions
by acting on its own. Such complex situations call for a
cooperative decision making system, in which neighboring
CAVs cooperate with each other to avoid potential collisions.

In recent years, a variety of cooperative planning ap-
proaches for CAVs have been proposed. Centralized ap-
proaches employ a central computing node, which is re-
sponsible for detecting and avoiding collisions by computing
cooperative actions plans of all on-road CAVs [1], [2]. Cen-
tralized approaches deterministically find optimal solutions
but are computationally expensive and scale poorly to a
large number of CAVs [3]. In decentralized approaches, each
CAV from a coalition of CAVs is individually responsible
to compute its collision-avoiding action plan. Each CAV
generally formulates the action planning problem as a form
of Markov Decision Process (MDP), which can be solved
using different reinforcement learning techniques such as
Monte Carlo Tree Search(MCTS)[4][5]. These approaches
work well in simple scenarios with small number of CAVs
in the coalition. As the coalition size grows, MCTS algo-
rithm becomes computationally intractable and the collision
avoidance success rate also drops down. In our previous
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works[6][7], we proposed a modified MCTS algorithm and
an improved reward function to improve the scalability
and the collision avoidance success rate. Decentralized ap-
proaches can be effective for even larger number of CAVs
if CAVs are grouped into multiple smaller-sized coalitions.
However, CAVs in different coalitions must communicate
with each other to come to a collision-free consensus across
multiple coalitions. This is a complex problem and have not
been addressed yet.

We present Cooperative Collision Avoidance (CoCoA) al-
gorithm for multiple interacting coalitions of CAVs. CoCoA
employs a sequential decision making approach. Leaders of
the coalitions in a coalition sequence cooperate to finalize
action plans for their coalition members that are free of
inter-coalition conflicts. CAVs inside a single coalition use
a hierarchical decision making approach as proposed in our
previous work[8]. We implement CoCoA in a large scale
multi-agent-based traffic simulator to evaluate its scalabil-
ity and collision avoidance success rate. The experimental
results in the simulations prove the application of the work.

In the next section, we review related works. In Section
III, we formalize the problem. In Section IV, we give an
overview of CoCoA approach. In Section V, we present
CoCoA algorithms and in Section VI, we present the exper-
imental results showing applicability of CoCoA to multiple
coalitions of CAVs.

II. RELATED WORK

Collision avoidance approaches discussed in the liter-
ature can be categorized as centralized or decentralized
approaches. In centralized approaches, a central server is
responsible for planning of actions for all affected CAVs.
In decentralized approaches, each CAV is responsible for
planning its individual actions and coordinating with other
CAVs to avoid collisions.

A. Centralized Solutions

In centralized collision avoidance approaches, CAVs pe-
riodically communicate their respective states to a central
node, which can be a vehicle or a server. When the central
node detects a potential collision, it uses an optimization
method to find action plans for all conflicting CAVs. Differ-
ent optimization methods have been proposed.

In [9], a single CAV detects the conflicting neighboring
CAVs and derives action plans for all conflicting CAVs in
a priority order using Mixed Integer Programming (MIP).
In [1], authors propose to use a two step method. In Path
Planning step, server uses SRRT (Smooth Rapidly exploring

978-1-6654-6880-0/22/$31.00 ©2022 IEEE 2856

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:08:19 UTC from IEEE Xplore. Restrictions apply.



Random Trees) algorithm to find non-colliding trajectory of
each CAV. Server then uses Motion Planning step to maxi-
mize the speed of each CAV along the computed trajectories.
In [10], authors propose to use Mixed Integer Quadratic
Programming(MIQP) along with collision constraints to find
non-colliding CAV trajectories. In [11], authors propose to
decompose the centralized Quadratic Programming problem
using Alternating Direction Method of Multipliers(tADMM).
The decomposed optimization objective is then solved by on
a cluster of computing nodes to take advantage of parallel
processing. In [2], authors formulate the CAV trajectory
calculation problem as an Integer Programming problem with
collision constraints that is solved using a commercial SAT
solver.

Main limitation of centralized approaches is their scala-
bility as they cannot handle a large number of vehicles with
a fixed amount of centralized computational resource. Since
central server alone is responsible for planning actions of all
CAVs, the whole system fails in case the central server fails
or is unreachable.

B. Decentralized Solutions

Decentralized approaches are generally coalition-based.
When a collision is detected by a coalition member, each
CAV in the coalition cooperates with other coalition mem-
bers to plan its individual actions by taking into account
their current positions and future actions. Decentralized
approaches can be classified into single coalition approaches
and multiple coalitions approaches.

1) Single Coalition: Single coalition approaches group all
neighboring CAVs participating in the collision avoidance
decision-making process together in a single group. In some
single coalition approaches, CAVs in the coalition cooperate
with each other directly by communicating their action plans
with each other. In other approaches, CAVs use indirect
cooperation using sensors to estimate other CAV states and
actions.

In [12], authors represent a set of CAVs driving on
a multi-lane road as nodes on a distributed graph. Each
CAV is represented using a potential field function. CAVs
use gradient descent method to compute non-colliding tra-
jectories. This approach uses indirect cooperation and is
limited to simplistic collision avoidance scenarios. In [13],
authors propose the desired versus planned trajectory (DVP)
approach. Each CAV derives and broadcasts two trajectories:
a planned trajectory that it is currently following and the
desired trajectory that it wants to follow. When a different
CAV receives this information, it checks and replans if it
can accommodate the first CAV’s desired trajectory and
broadcasts its updated trajectory. Although this approach is
successful for two CAVs in simple conflicting situations, it is
not scalable to large number of CAVs as the algorithm takes
many replanning steps for each CAV to converge. In [14],
authors propose a coalition-based leader-follower approach
to improve computational resource utilization. Leader CAV
executes an actor-critic method known as Co-DDPG to learn
parameters of CAV state-action policy and communicates

these parameters with the follower CAVs. All coalition mem-
bers use the learned state-action policy to select collision-
avoiding actions. This method achieves indirect cooperation
through the use of a reward function. This method has only
been tested with up to three cooperative CAVs scenarios.
Monte Carlo Tree Search is a very common approach used
for cooperative decision making [4], [15], [5], [16]. In
MCTS-based approaches, each CAV iteratively constructs
an MCTS tree where each tree node represents states of
coalition members and each tree edge represents actions of
coalition members. Each CAV ranks the tree edges and picks
the highest-ranked edge representing the coalition action
plan. Each CAV executes its individual action from the se-
lected coalition action plan. Indirect cooperation is achieved
by considering rewards for all coalition members in the
reward function. The main limitation of most MCTS-based
approaches is scalability as the tree branching factor grows
exponentially with the number of CAVs. Moreover, methods
with indirect cooperation require solutions computed by all
CAVs in isolation to be conflict-free. This is not always
guaranteed and may lead to collisions. In our previous work
[6], we proposed a hierarchically decentralized algorithm that
improves the scalability of MCTS by reducing the branching
factor of the MCTS tree exponentially. CAVs in the coalition
use direct cooperation to ensure that their selected action
plans are collision-free. This approach works well for a
single coalition of CAVs, however the application to multiple
coalitions of CAVs is not discussed.

2) Multiple Coalitions: Single coalitions algorithms work
well for a small number of CAVs, but do not scale well to a
large coalition size. It is more practical to group CAVs into
multiple interacting coalitions that cooperate with each other
at coalition level. However, collision avoidance problem for
multiple coalitions of CAVs have not been addressed yet at
the algorithm level.

In this paper, we present Cooperative Collision Avoidance
(CoCoA) algorithm for multiple coalitions of CAVs. We pro-
pose a hierarchical and sequential decision-making approach
where the inter-coalition decision-making is performed se-
quentially by each coalition along the coalition sequence.
Hierarchical approach is used for the intra-coalition decision
making. The unique contributions of our approach are:

o We propose the first cooperative collision avoidance
algorithm that works across multiple coalitions of CAVs
to our best knowledge.

e« We propose a sequential decision-making approach
for multiple coalitions of CAVs that builds upon our
previously proposed hierarchical decision-making ap-
proach for a single coalition using an improved MCTS
algorithm[6].

e« We conducted extensive realistic experiments in the
multi-agent-based simulator to evaluate the reliability
and the scalability of CoCoA algorithms for multiple
coalitions of CAVs. Additionally, we prove inapplica-
bility of the current state-of-the-art algorithms

o We justified the need for multiple coalitions structure
for an efficient collision avoidance through experimental
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analysis.

III. MODEL DEFINITION

We assume that a set of n CAVs are navigating on a
straight highway. These CAVs are distributed in a sequence
of coalitions denoted by A. Each coalition is identified by
its ID 4 € N. In each coalition i, one coalition member
is assigned the role of a leader and is responsible for the
coalition management. Each coalition ¢ € A is formally
defined by a coalition state vector C* = {I,s*, M? '}
where [* is the coalition leader, s is coalition size, M is a
set of member CAVs, and W is a set of neighbor coalitions.
Coalition formation and leader assignment algorithms are
adapted from our previous work [17].

A member CAV of coalition ¢ can be identified using its
own ID j € M? and is defined using a CAV state vector
VI = {p/ v lane! 07 27, A7} where p’ is the CAV’s
position, v/ is its velocity, lane’ is its current lane, 67 is
its orientation, 27 is the size of CAV containing length and
width values, and A7 is the action set of CAV j available
in a given state considering road boundaries. We consider
five primitive actions in each CAV’s action set notably fixed
acceleration, fixed deceleration, maintain speed, change lane
to the left lane, and change lane to the right lane.

A mitigation action plan o, is a sequence of h actions
performed to avoid collisions by CAV j in case of perceived
danger or warning related to a misbehaving vehicle. It is
defined as o) = {af }I_, where a/ € A’ is a single
CAV primitive action from its action set and ¢, is the start
of the execution of the mitigation plan’s k’th action. h is
known as the planning horizon. Although individual CAV’s
primitive action set is small, each CAV has many more
number of action plans options. We define the coalition
mitigation action plan «}, for coalition i as a set of individual
CAV mitigation action plans, one for each coalition member
je M e, of ={al|j € M'}.

We require that all coalitions in set A/ are navigating in a
non-overlapping sequence on the highway, meaning that no
two CAVs from two different coalitions are navigating later-
ally together in different lanes. This assumption allows us to
define the definitions of preceding and succeeding coalitions.
A preceding coalition or a predecessor of the coalition ¢ is
the coalition that is navigating ahead of the coalition ¢ and is
denoted by pred(i). A succeeding coalition or a successor
of the coalition ¢ is the coalition that is navigating after the
coalition ¢ and is denoted by succ(i). We call the coalition
that is directly affected by the misbehaving vehicle a primary
coalition in the decision-making context. Coalitions other
than the primary coalition are called secondary coalitions.
We assume that the primary coalition is always located at
either the beginning or at the end of the coalition sequence.

IV. GENERAL APPROACH

The decision making problem of a single coalition ¢
is formulated as a Multi-agent Markov Decision Process
(MMDP) [18]. Unlike decentralized planning with implicit
cooperation using the reward function [5], our approach

uses explicit V2V communication to coordinate between all
members of a coalition. The solution to an MMDP is given
by state-action value function Q*, which can be used to select
an optimal CAV action a’ in a given CAV state V7. In the
first step, Member CAVs of coalition ¢ execute a modified
version of Monte Carlo Tree Search (MCTS) algorithm to
approximate optimal Q* values. Using the approximated Q*
values, each CAV j selects a set of ranked individual action
plans {7 }. In the second step, coalition leader lz receives the
sets of ranked individual CAV action plans {{o },Vj € M*}
and selects top three non-conflicting coalition action plans
ranked using Q* values. In the regular MCTS algorithm,
each CAV iteratively constructs an MCTS tree, which can
grow exponentially large with the coalition size and limits
the scalability of MCTS. In our modified MCTS algorithm,
each CAV constructs an MCTS tree with a reduced branching
factor that is not dependent on the coalition size to improve
its scalability.

Our general approach for the multi-coalition collision
avoidance decision-making works in a sequential manner
starting from the primary coalition along the coalition se-
quence N. In the sequential decision-making approach, the
task of choosing the final coalition action plan for any
coalition is performed by the next neighboring coalition in
the coalition sequence A. Our sequential decision-making
approach uses two main algorithms: a primary coalition
algorithm, and a secondary coalition algorithm. When a CAV
from the primary coalition detects the misbehaving vehicle,
the coalition leader of the primary coalition uses the primary
coalition algorithm to select the top three coalition action
plans according to Q* values. Since the primary coalition
is located either at the beginning or at the end of the
coalition sequence A/, it only has one neighboring secondary
coalition. The primary coalition sends the three action plans
to the coalition leader of its neighboring secondary coalition.
The secondary coalition leader uses the secondary coalition
algorithm to choose one of the three action plans as the
final plan for the primary coalition and sends it back to
the primary coalition leader. The secondary coalition al-
gorithm also generates three coalition action plans for the
secondary coalition itself, which are then forwarded to the
next secondary coalition leader for the final plan selection.
This process is repeated until we reach the last secondary
coalition in the coalition sequence A. The last secondary
coalition uses the secondary coalition algorithm to generate
a single best coalition action plan for itself and sends it to
its members.

V. ALGORITHMS
A. Primary coalition algorithm

Without any loss of generality, assume that the primary
coalition 1 is the last coalition in the sequence A/. When a
CAV of the coalition i is affected by the misbehaving vehicle
m, it sends an alert to all members of i. Upon receiving
the alert, each member j of ¢ executes the modified MCTS
algorithm for a single coalition to estimate Q* values for
each CAV action in the MCTS tree. Each CAV shares its
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Algorithm 1 Primary coalition algorithm

Algorithm 2 Secondary coalition algorithm

Output: o),Vj € M’
: T < ReceiveMCTSTrees()
. currentNodes < null
: for j in M* do

currentNodes(j) < T(j).n,
end for
: {ai} « RecursivePlansSelection(currentNodes)
. pred(i) < getPredecessorCoalition()
. succ(i) + getSuccessorCoalition()
. if pred(i) # null then
sendPlans(pred(i), {a} })
ol + receiveFinalPlan(pred(i))

—_
- o

12: else

13: if succ(i) # null then

14: sendPlans(succ(i), {a} })
15: a, + receiveFinalPlan(succ(i))
16: else

7« {a )L

18: end if

19: end if

20: for j in M* do

21: o, b (j)

22: end for

MCTS tree with the coalition leader I*. Each path from the
tree’s root node to the leaf node represents an individual
mitigation action plan prioritized by Q* values. The coalition
leader receives the individual mitigation action plans in form
of MCTS trees from all members in step 1 and selects a set
of top three coalition action plans o, ranked using Q* values
in step 6 of the Algorithm 1. The primary coalition leader
I’ sends the top three plans ranked using Q* values to its
preceding coalition pred(i)’s leader 1P"*() in step 10. The
task of choosing the final coalition plan for i is left to [P7¢4(®)
since the final plan can affect the CAVs of pred(i). When [*
receives the final action plan o}, from (P74 in step 11, it
extracts individual plans from this final plan in steps 20-22
and sends it to its member CAVs for execution.

B. Secondary coalition algorithm

We now describe the algorithm for secondary coalitions,
given in Algorithm 2. Without loss of generality, assume that
a leader CAV [? of the secondary coalition 7 received a set of
top three coalition action plans from its succeeding coalition
leader [7'. Upon receiving the set of coalition action plans,
I* determines the impact for all i"’s action plans (step 2-4 in
Algorithm 2) and chooses the one which has the least impact
on the members of ¢ (step 5). The impact is defined as the
number of coalition members of secondary coalition that will
have collision with the members of the succeeding coalition
if the succeeding coalition follows the action plan under
consideration. I’ sends the chosen plan a back to I’ as the
final coalition action plan for 4’. I* also sends the message to
all its members to derive their individual mitigation action
plans and stores them (step 6). This message includes i’’s

Input: {a}i}
Output: o),V € M)
: Initialize ¢mpactFactors to a null map
: for 7 in 1,2,3 do
impact Factors(i) + computelmpact({c }[i])
end for
ol « pickMinImpactPlan({a, }, impact Factors)
. sendToCoalition(i’, o’} )
T < ReceiveMCTSTrees()
: currentNodes < null
: for j in M® do
currentNodes(j) < T(j).nu
: end for
12: {a}} < RecursivePlansSelection(currentNodes)
13: pred(i) + getPredecessorCoalition()
14: succ(i) < getSuccessorCoalition()
15: if i’ = pred(i) then
16: if succ(i) # null then

o I I SR

—_—
- O

17: sendPlans(succ(i), {a} })

18: a + receiveFinalPlan(succ(i))
19: else

20: af + {ad 1]

21: end if

22: else

23: if pred(i) # null then

24: sendPlans(pred(i), {ad })

25: a + receiveFinalPlan(pred(i))
26: else

o ah e {al)l

28: end if

29: end if

30: for j in M" do

31: o, o (5)

32: end for

plan a}: too as it affects the members of i. Upon receiving
this message, each CAV j of the coalition ¢ executes the
single coalition algorithm to derive its set of individual action
plans «}. Each member sends its set of individual action
plans to the leader [*. Upon receiving the plans, [ selects
a set of top three non-colliding coalition action plans o .
Since the primary coalition was the successor of i, it checks
if there is any preceding coalition. If there is a preceding
coalition to 4, I* sends the top three plans to its preceding
coalition’s leader (in steps 24-25), which is responsible for
choosing the final plan for ¢. If there is no preceding coalition
left, I* chooses the best coalition action plan o, according to
Q* values (in step 27). After receiving the final action plan
or deciding it by itself, I* extracts individual CAV plans and
sends them to its members for execution in steps 30-32.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed CoCoA algo-
rithms by implementing them in a multi-agent-based simu-
lator. We evaluate the reliability and the scalability of our

2859

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on February 27,2023 at 18:08:19 UTC from IEEE Xplore. Restrictions apply.



multi-coalition approach. We define reliability as a collision
avoidance algorithm’s ability to find a non-colliding coalition
action plan in fixed computational processing time and scal-
ability as the maximum number of coalitions for which the
algorithm can complete its execution in fixed computational
processing time. We also implement current state-of-the-art
single-coalition approaches including centralized algorithm
[2], the decentralized algorithm DeCoC-MCTS [15] and the
hierarchically decentralized algorithm ISM [8] to show their
inapplicability to a multi-coalition setting. Additionally, we
perform an analysis to select optimal values of the coalition
size and the number of coalitions on the road for a fixed
total number of CAVs !

A. Multi-agent-based simulator

We created a CAV model and tested the algorithms in a
microscopic multi-agent based traffic simulator. We imple-
mented the virtual CAV as an autonomous decision-making
agent. The virtual CAV has the capability to dynamically
sense its surroundings through simulated sensors and to
communicate with other virtual CAVs through simulated
V2V communication. During the simulation, a CAV’s prop-
erties (e.g., sensor range) and behavior (e.g., speed) can be
modified and the outcome can be witnessed in simulated
real-time.

B. Simulation Experimental Setting

In the virtual simulation environment, the unit of time is
called cycle, and the unit of length is simply called unit.
In our multi-coalition simulation experiments, a sequence of
coalitions is navigating on a three-lane highway. Each CAV
member in each coalition of the coalition sequence is cruising
at the speed of 2 units/cycle. During the simulation experi-
ment, we add a misbehaving virtual CAV to the simulation
environment that misbehaves to cause a potential collision
with one or more coalition CAVs. When an affected CAV
detects the misbehaving vehicle through one of its simulated
sensors, it sends an alert to all of its coalition members.
The coalition containing the affected CAV is known as the
primary coalition. In our experiments, the primary coalition
is located at either end of the coalition sequence. In our
experiments, we use the planning horizon h = 60 cycles,
the Time To Collide (TTC) value TT'C = 20 cycles, and the
action duration 6t = 10 cycles. Each coalition deliberates
to choose a coalition action plan containing 6 consecutive
actions for each of its coalition members. We perform
three types of experimental evaluation: reliability evaluation,
scalability evaluation, and trade-off analysis.

In the reliability evaluation experiments, we consider three
coalitions in the coalition sequence. Each coalition consists
of 5 coalition members. We consider two types of misbe-
haviors by the misbehaving vehicle (see Figure 1) as listed
below:

IDemo videos are available at:
https://www.utdmavs.org/itsc2022/

(a) Acceleration misbehavior: Misbehaving vehicle accelerates from behind
three coalitions

(b) Full stop misbehavior: Misbehaving vehicle breaks in front of three
coalitions

Fig. 1: Misbehavior types for multi-coalition reliability evaluation
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Fig. 2: Reliability evaluation: Acceleration misbehavior

o Acceleration misbehavior- The misbehaving vehicle is
positioned behind the primary coalition in the middle
lane and speeds at 5 units/cycle in a straight path.

 Full stop misbehavior- The misbehaving vehicle is po-
sitioned in front of the primary coalition in the middle
lane and comes to a full stop at O units/cycle.

C. Reliability Evaluation

Here, we define reliability as a collision avoidance al-
gorithm’s ability to find a non-colliding coalition action
plan for each of the three coalitions in the given com-
putational processing time. We consider three coalitions,
each consisting of five CAVs, and two misbehavior types
as shown in Figure 1. For each misbehavior type, we set
the processing time to different values and find the collision
avoidance success rate for 10 simulation experiments per data
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Fig. 3: Reliability evaluation: Break misbehavior
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point per algorithm, totalling 200 simulation experiments for
each scenario. We plot the collision avoidance success rate
versus the processing time for both misbehavior types in
Figures 2 and 3. For CoCoA algorithm, as we increase the
allowed computation time, the collision avoidance success
rate gradually increases demonstrating the reliability of our
approach. For single coalition approaches, we consider a
single coalition of 15 CAVs instead of three coalitions
of five CAVs each, as these algorithms do not work for
multiple coalitions. Still the success rate remains zero for
these algorithms, as these approaches are not scalable to a
large coalition size of 15. This shows CoCoA algorithm’s
reliability in achieving higher collision avoidance success
rate for larger number of CAVs than current single coalition
algorithms. Our previous work[6] shows comparison of non-
zero success rates of our single-coalition approach with the
state-of-the-art single-coalition algorithms shown here for a
smaller number of CAVs.

D. Scalability Evaluation

We define scalability for multi-coalition decision making
as the maximum number of coalitions for which the algo-
rithm can complete its execution in a reasonable amount of
time. In the scalability experiments, we fix the number of
CAVs in each coalition to 5 and vary number of coalitions
on the road from one to up to five coalitions. We chose the
acceleration misbehavior type to test the scalability of our
multi-coalition approach. We expect the break misbehavior
type to achieve the similar scalability results as the scalability
of our approach is not scenario-dependent and that s what
we have plotted in Figure 4. We increase the allowed com-
putation time to 10 seconds as the purpose is to evaluate the
computational efficiency of our algorithm. Since the multi-
coalition decision-making algorithm is sequential in nature,
each coalition can start its execution of the decision-making
algorithm only after the previous coalition has finished. For
this reason, each coalition gets the allowed computation
time in seconds that equals to 10 divided by the number
of coalitions |[N| in the coalition sequence. All CAVs in
a given coalition perform decision-making in parallel and
independent of each other for full 10/]N| seconds. For single
coalition algorithms, full 10 seconds are used by each single
coalition decision-making algorithm. Experimental results
show that our multi-coalition algorithm found non-colliding
coalition action plans for up to 4 coalitions in the coalition
sequence, where each coalition consisted of five CAVs. It
means that a total number of 20 CAVs can perform collision
avoidance decision-making in 10 seconds of processing time.
It is a significant improvement over the highest limit of the
single coalition algorithms, which support up to 14 CAVs
(see Figure 4).

E. Trade-off Analysis

We perform the trade-off analysis between the number
of coalitions and the individual coalition size for a fixed
total number of CAVs on the road. For a fixed total number
of CAVs, we can reduce each individual coalition size to

S 20 20 |00 cenratized 20
% [] D pecoc-mcrTs
5 14 0o 1w 14
g I 1] CoCoA
s 10
2 7 6
g I_IH 4 T
Z
0 |

Acceleration Scenario Break Scenario

Fig. 4: Scalability results

Fig. 5: Trade-off analysis: 6 coalitions of 2 CAVs each (total 12
CAVs)

increase the number of coalitions and vice versa. Our objec-
tive is to derive optimal values for the individual coalition
size and the number of coalitions for a fixed number of
CAVs and argue that there should be a balance between the
coalition size and the number of coalitions. We fix the total
number of CAVs to 12 (See Figure 5). We generate several
different coalition configurations including 12 coalitions of
1 CAV each, 6 coalitions of 2 CAVs each, 4 coalitions of
3 CAVs each, 3 coalitions of 4 CAVs each, 2 coalitions of
6 CAVs each, and a single coalition of 12 CAVs. For each
of these coalition configurations, we perform 10 simulations
experiments and note the collision avoidance success rate.
We fix the allowed computation time to 3.6 seconds. For
the sequential decision-making algorithm used for the multi-
coalitions, 3.6 seconds computation time gets divided among
the coalitions. For 12 coalitions, each coalition gets 0.3
seconds of the computation time. Whereas for 2 coalitions,
each coalition gets 1.8 seconds of the computation time.
We can see that 4 coalitions with 3 CAVs each con-
figuration yields the highest success rate (see Figure 6). 3
coalitions with 4 CAVs each and 2 coalitions with 6 CAVs
each configurations also have very good success rate values.
However, very small coalition sizes of 1 and 2, as well as

0.5} |

Success rate

0,7 _ L] L] L] —_

I I I I I I
12 6 4 3 2 1
Number of coalitions

Fig. 6: Success rate for different number of coalitions constructed
out of 12 CAVs
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very large coalition size of 12, do not yield good results
at all. This confirms our initial argument that the balance
between the number of coalitions and the individual coalition
size must be struck to yield the best results for collision
avoidance.

VII. CONCLUSION

In this paper, we present a cooperative action planning
algorithm for multiple interacting coalitions of CAVs to
find non-colliding action plans in collision situations. The
primary coalition affected by the misbehaving vehicle uses
Monte Carlo Tree Search based approach to derive three
action plans and sends them to the neighboring secondary
coalition leader. The secondary coalition leader picks the
least impact plan as the final plan for the primary coali-
tion. The secondary coalition CAVs take into account the
primary coalition plan when deriving top three secondary
coalition action plans using MCTS. This sequential decision
making approach is carried out until the other end of the
coalition sequence. We implemented CoCoA in the multi-
agent-based simulator along with state-of-the-art centralized
and decentralized single coalition algorithms. Experimental
results show that only CoCoA improves upon the single
coalition algorithms in both reliability and scalability met-
rics. Additionally we presented an analysis to select the
optimal coalition size and the optimal number of coalitions
given a total number of CAVs.

The limitations of the current version of CoCoA algorithm
include its inability to tackle a misbehaving vehicle in middle
of the coalition. It also does not tackle continuous changes
in the behaviour of the misbehaving vehicle such as lane
changes. Additionally, it requires coalitions to be in a non-
overlapping sequence. The future work includes extending
our approach to allow multiple coalitions navigating laterally
together and also allowing changes in misbehaviour by the
misbehaving vehicle.
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