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Abstract— Connected and autonomous vehiles (CAVs) re-
quire an effective cooperative action planning strategy in an
emergency situation. Monte Carlo Tree Search (MCTS) is a
promising planning technique for such problems with large
state spaces. However, traditional MCTS-based techniques do
not scale well with the number of vehicles. In this paper, we
present a novel MCTS-based cooperative action planning algo-
rithm for CAVs driving in a coalition formation. Our proposed
algorithm improves the reliability and the scalability of MCTS.
Explicit communication is used to ensure that mitigation action
plans chosen by the CAVs are conflict-free when possible. We
perform the evaluation of the proposed algorithm in a large
scale multi-agent based traffic simulation system. Our simulated
experiments show that our approach improves upon current
state-of-the-art centralized and decentralized algorithms.

I. INTRODUCTION

Cooperative action planning for connected and autonomous
vehicles (CAV) is central to autonomous driving. In emer-
gency situations, when a CAV misbehaves due to techni-
cal problems or unexpected environmental conditions, it is
essential for neighbor CAVs to find action plans to avoid
collisions. A CAV action plan is a sequence of actions such
as acceleration or lane change. In this paper, we consider
the problem of generating cooperative action plans for a
coalition of CAVs in colliding situations. A CAV coalition is
a group of CAVs that drive together for information sharing
and mutual support. CAV coalitions improve roadway safety,
reduce energy consumption and decrease traffic congestion
[1].

Cooperative action planning for CAVs is a complex task
that involves decision-making for a multi-agent system.
Single-agent decision making algorithms can not be applied
as the number of possible solutions grow exponentially with
the number of agents. In recent years, a variety of cooperative
action planning methods for CAV collision avoidance have
been proposed [2], which include centralized, decentralized
and partially decentralized methods. In centralized methods,
a central server uses the state information sent by all CAVs
to solve a centralized optimization problem and finds action
plans for all CAVs. Centralized methods deterministically
find optimal solutions but scale poorly [3].

Most decentralized and partially decentralized methods
formulate the CAV action planning problem as a form of
a multi-agent Markov Decision Process(MMDP), which can
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be solved using different reinforcement learning techniques.
However, classical reinforcement learning techniques are not
efficient for the CAV action planning problem due to a very
large state space [4].

A reinforcement learning technique known as Monte Carlo
Tree Search (MCTS) [5] has recently shown promising
results in problems with very large state spaces such as
the game of Go [6]. MCTS was applied to the CAV action
planning problem and performed well in simple scenarios
with a small number of CAVs [7] [8]. The performance of
MCTS is limited by the branching factor in the MCTS tree.
When applied to scenarios with a large number of CAVs,
MCTS struggles to scale as the branching factor grows
exponentially with the number of CAVs. We have proposed
Approximate Simultaneous Move (ASM-MCTS) [9], a mod-
ified MCTS-based algorithm that removes the dependence
of the branching factor on the number of vehicles. However
the approximation uses the random monte carlo sampling
approach which reduces the reliability of ASM-MCTS.

We present Improved Simultaneous Move (ISM), a par-
tially decentralized MCTS-based algorithm for CAV action
planning. In ISM, we significantly improve the reliability and
the scalability of ASM-MCTS by introducing novel designs
for all four stages of ASM-MCTS. We propose to intelli-
gently select actions for agents at each node of the MCTS
tree by reusing the reward values received in the previous
iterations. We implement ISM in MATISSE, a large scale
multi-agent traffic simulation system and compare it with
the state-of-the-art centralized and decentralized algorithms.

In the next section, we review related works. In Section
III, we formalize the problem. In Section IV, we present ISM
and in Section V, we present the comparative experimental
results which show how ISM improves upon the state-of-the-
art centralized and decentralized algorithms.

II. RELATED WORKS

We classify the proposed collaborative collision avoidance
methods according to their planning approach: non AI-based
approaches and AI-based approaches. Each of the category
can be further categorized as centralized, decentralized, or
partially decentralized. In centralized approaches, a central-
ized server is responsible for deriving collision avoidance
decisions for vehicles. In decentralized approaches, each
CAV makes the collision avoidance decision in isolation.
In partially decentralized approaches, decision-making is
hierarchical and is performed at two levels: at the vehicle
level and at the coalition leader level.
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A. non AI-based approaches

Centralized: Most conventional optimization-based ap-
proaches fall into this category. These approaches formulate
the trajectory planning problem for CAVs as a single, global
optimization problem. [10] propose to use Mixed Integer
Linear Programming (MILP) with the collision constraints.
[11] propose to use Mixed Integer Quadratic Programming
(MIQP) with the collision constraints. [12] propose a graph
theory based optimization approach. Each vehicle defines
its reachable target points (RTPs). The server checks these
points for collisions and defines safe target points (STPs)
for each vehicle, from which final trajectories are gener-
ated. [13] propose to use a pre-defined maneuver template
based approach. A maneuver template describes continuous
dynamics of a set of vehicles. The server checks the off-line
calculated maneuver templates to match with the current traf-
fic scene. The matching maneuver template with the lowest
cost specifies the cooperative maneuver. [14] propose a cloud
computing based solution that uses parallel processing. The
trajectory planning problem is formulated as a centralized
Quadratic Programming (QP) problem, which is decomposed
using Alternating Direction Method of Multipliers (ADMM)
[15] and is solved on a network of computing nodes. [16]
propose to formulate the trajectory generation problem as
an integer programming problem. The optimization objective
is to minimize the travel time. The integer programming
problem is solved using a SAT solver, which provides the
formal guarantee of the collision avoidance. Two methods are
introduced to reduce the computation time. In the grouping
method, vehicles are grouped into disjoint sets of interacting
vehicles and the optimization is performed for each set
separately. In the collision check point method, the opti-
mization is carried out at every third or every sixth timestep
instead of at every timestep. This approach is evaluated on
scenarios involving up to 5 vehicles. The above mentioned
centralized approaches generally provide optimal solutions
to the formulated optimization problems, however they are
computationally expensive and not scalable.

Decentralized: [17] proposes a brute search method to
find trajectories for a group of CAVs. Each CAV computes a
list of all possible maneuvers along with the associated costs
and shares it with other CAVs. Each CAV then performs an
exhaustive search to find non-colliding plan for the whole
group. This approach is not scalable due to the redundant
and expensive computation performed by each CAV.

B. AI-based approaches

Decentralized: In AI-based approaches, each CAV selects
an action by learning values of all actions in the current
state and picking the action with the highest value. Most
AI-based approaches are either decentralized or partially
decentralized. In decentralized approaches, cooperation is
achieved implicitly using a cooperative reward function.
Decentralized approaches rely on the proposed algorithm’s
ability to find a Nash equilibrium, i.e., no single agent can
perform a different action yielding a higher reward. However
a Nash equilibrium isn’t always guaranteed and this severely

impacts the reliability. On contrary, partially decentralized
approaches achieve cooperation explicitly using V2V com-
munication. This approach is much more reliable, in that a
non-colliding action plan is always chosen when it’s possible.
[7] proposes a decentralized approach using Monte Carlo
Tree Search (MCTS) [18] with implicit cooperation. Possible
actions are chosen from a discrete action set. The approach
was evaluated on scenarios involving up to three cooper-
ative vehicles. [8] proposes DeCoH-MCTS, a decentralized
cooperative hierarchical MCTS-based approach with implicit
cooperation. The concept of macro-actions is proposed which
consist the sequences of primitive actions. Macro-actions
reduce the effective MCTS tree depth. The evaluation is per-
formed against the scenarios involving up to three vehicles.
[19] proposes DeCoC-MCTS, a decentralized cooperative
continuous MCTS-based approach with implicit cooperation.
This method proposes to use continuous action-spaces for
CAVs to generate flexible trajectories. Authors propose two
techniques to deal with the infinite action-space size, namely
kernel update and guided search . In kernel update, action
similarity is used to learn the values of similar actions
together. In guided search, size of the finite action-set for
each vehicle is fixed initially and gradually increased as
more iterations are performed. The evaluation is performed
against the scenarios involving up to three vehicles. In their
later work [20], authors propose a preprocessing step for
an MCTS based algorithm. A heuristic model over vehicle
actions is learned from a synthetic data generated using
simulations. The learned model is plugged back into DeCoC-
MCTS to steer the algorithm towards more promising areas
of the action space. The authors show that MCTS with
heurisic model has higher success rate than the baseline
MCTS in some scenarios. MCTS-based approaches have
the limitation of scalability as the MCTS tree size grows
exponentially with the number of vehicles and the size
of the joint action-space. To our knowledge, none of the
proposed decentralized algorithms are evaluated using a
multi-agent based traffic simulation system. As such their
evaluation lacks the simulation of real world multi-agent
system properties such as autonomy, local views and partial
knowledge.

Partially Decentralized: We have proposed ASM-MCTS
[9] approximate simultaneous move MCTS-based algorithm
with explicit cooperation and hierarchical decision-making.
ASM-MCTS reduces the MCTS tree size exponentially
compared to other MCTS-based algorithms by removing the
dependence on the joint action-space size. This increases
the scalability of the MCTS algorithm. However it also
introduces the approximation in learning the action values,
which at times reduces the reliability.

In this paper, we present a scalable and reliable vehicle-
level decision-making algorithm for the partially decentral-
ized approach. We propose a hierarchical decision-making
approach where the decision-making is performed at the
vehicle level and at the coalition leader level. The unique
contributions of our approach are the following:
• We present Improved Simultaneous Move (ISM)
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TABLE I: CAV Actions

Action Condition Description

maintain - Maintain the current velocity

accel
Speed shouldn’t ex-
ceed maximum speed

Accelerate with a fixed acceler-
ation value αacc

decel
Speed shouldn’t be
zero

Decelerate with a fixed deceler-
ation value αdec

cll
Currently not in the
left most lane

Change lane to the left lane of
the current lane

clr
Currently not in the
right most lane

Change lane to the right lane of
the current lane

MCTS-based algorithm with novel designs for all four
stages of MCTS: selection, expansion, simulation and
backpropagation.

• We implement ISM in MATISSE, a large scale multi-
agent based traffic simulation system.

• We conduct extensive simulated experiments to show
that ISM improves upon the state-of-the-art centralized
and decentralized algorithms in reliability and scalabil-
ity metrics.

III. MODEL DEFINITION

In the remainder of this paper the terms agent and CAV are
used interchangeably. We consider a coalition C of n CAVs
is navigating on a highway. A coalition is formed when
CAVs come in close proximity of each other. C ’s agents are
called coalition members. One coalition member is chosen
as a leader and is responsible for coalition management.
Coalition formation and leader assignment algorithms are
adapted from our previous work [21].

A CAV is defined by its ID i ∈ C and a state vector
si = [pi, vi, li, θi, xi] where pi is the CAV’s position, vi is
its velocity, li is its lane, θi is its orientation, and xi is the
size of the vehicle containing length and width values. A
coalition joint state is denoted as s = {si}i∈C .

Table I lists CAV’s possible actions. A mitigation action
plan αih is a sequence of h consecutive actions that is defined
by a CAV i in case of perceived danger or warning related
to a misbehaving vehicle. It is defined as αih = {aitk}

h
k=1,

where tk is the start of the execution of the mitigation plan’s
k’th action. h is known as the planning horizon. An action
is performed over a duration denoted ∆t.

Based on current CAV technologies, we assume that each
CAV is equipped with perception sensors such as radars
(front and back) and 360°Lidar, which provide short and
long range sensing data. CAVs in a coalition use V2V
communication to continuously exchange information with
each other. The information exchanged depends on the CAV
role in the coalition (i.e., member or leader) and includes
a CAV’s state si, the coalition joint state s = {si}i∈C , a
warning or an action plan αih.

We formulate the problem of decentralized cooperative
planning for communicating CAVs as a Multi-agent Markov
Decision Process (MMDP) [22]. Unlike a conventional
MMDP where each agent considers the immediate reward
for joint actions, our approach focuses on maximizing the

overall coalition reward based on CAVs’ action plans for a
horizon. Unlike decentralized planning with implicit coop-
eration using macro-actions [8], our approach uses explicit
V2V communication to coordinate between all members of a
coalition. MMDP is defined by a tuple 〈C, S,A, T,R〉, where
• C is a coalition of n CAVs.
• S represents the joint state space for the CAVs in C.
S = ×Si where Si is the state space for CAV i.

• A represents the joint action space for the actions of
CAVs in C. A = ×Ai where Ai is the set of actions
that i can perform.

• T : S × A × S → [0, 1] is the transition function
where T (s, a, s′) specifies the probability of the system
transitioning to state s′ when performing joint action a
in state s.

• R : S × A × S → R is the reward function with
R(s, a, s′) specifying the reward received when execut-
ing joint action a in state s and transitioning to the state
s′.

In our approach, in the event that a misbehaving vehicle m
is detected, each CAV i independently solves MMDP using
the communicated joint state s to estimate Q∗ values for the
next h consecutive actions, and possible start states for those
actions. Each CAV i derives all possible mitigation action
plans for horizon h, and ranks the plans using the Q∗ values.
Each CAV i sends the ranked plans to the coalition leader
using V2V communication. The coalition leader analyzes the
prioritized mitigation action plans, and deliberates to find,
an action plan αih for each CAV i such that the collision
constraints are satisfied when possible.

IV. ALGORITHMS

A. Monte Carlo Tree Search and its variants

Monte Carlo Tree Search (MCTS) is an algorithm to
solve MDPs using a combination of a tree-search algorithm
and Monte-carlo simulations. MCTS tree consists of nodes
referring to MDP states and edges referring to MDP actions.
One iteration of MCTS algorithm consists of four steps:
Selection, Expansion, Simulation and Backpropagation [18].
In the selection step, nodes are selected using some heuristic
function starting from the root node until a leaf node is found.
In the expansion step, the selected leaf node is expanded with
all the possible actions available at that state and one of
the children is selected. In the simulation step, a simulation
is performed from the selected child node until a terminal
node is reached. In the backpropagation step, reward value
received at the end of the simulation is backpropagated from
the leaf node to the root node. MCTS is an anytime algorithm
so it can be run either until a fixed number of iterations or
until the computational budget is exhausted. When MCTS is
applied to a multi-agent scenario (MMDP) in which multiple
agents perform their actions simultaneously, it’s known as
Simultaneous Move MCTS (SM-MCTS) [23]. In SM-MCTS
algorithm, MCTS tree size increases exponentially with the
number of agents and with the size of each agent’s individual
action space [9]. Thus it becomes impractical and very hard
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to find a solution for problems with large action-agent sets
as we show in Section V.

In our previous work [9], we proposed Approximate
Simultaneous Move Monte Carlo Tree Search(ASM-MCTS),
an MCTS-based algorithm which reduces the MCTS tree size
exponentially compared to SM-MCTS. This makes ASM-
MCTS more suitable for problems with large action-agent
sets than SM-MCTS. ASM-MCTS achieves exponentially
smaller tree size by reducing the branching factor of the tree.
The branching factor in ASM-MCTS is equal to the size of
the individual action space instead of the size of the joint
action space in SM-MCTS. MCTS tree nodes refer to the
joint states and edges refer to the current agent’s individual
actions. As each edge only refers to an individual action for
the current agent, actions for other agents are determined
using random sampling strategy. This methodology intro-
duces approximation in estimation of each node’s MCTS
statistics and may potentially decrease the reliability of the
results. We confirm this outcome using extensive simulated
experiments in Section V. In this paper, we present Improved
Simultaneous Move (ISM) algorithm that is both reliable and
scalable.

B. Weighted reward function
For ISM, we propose a weighted reward function. Indi-

vidual CAV i’s reward ritk at time tk consists of several
weighted reward terms as following:

ritk = ricollision + w · ricomfort (1)

Here ricollision refers to the penalty inflicted upon simulating
a colliding action. ricomfort includes several reward function
terms that are weighted by the weight vector w. These reward
terms include speed deviation, acceleration, lane changes,
lane deviation from the initial lane, and full stop. Cooperative
joint reward ritk,coop is defined in terms of the individual
reward terms and is computed by CAV i as follows:

ritk,coop = ritk +
∑
j∈C\i

λ · rjtk (2)

Here λ is the cooperation factor that controls the cooperation
of CAV i for other CAVs.

C. Improved Simultaneous Move (ISM) algorithm
In this paper, we introduce Improved Simultaneous Move

(ISM), an MCTS-based algorithm that is both reliable and
scalable compared to ASM-MCTS. To this effect, we propose
to intelligently select actions for other agents by reusing the
reward values received in the past iterations. ISM also inher-
its ASM-MCTS algorithm’s exponential reduction of MCTS
tree size achieved using the reduction of the branching
factor. ISM modifies all four ASM-MCTS steps: selection,
expansion, simulation and backpropagation. In the remainder
of this section, we consider that a coalition member i
receives a misbehaving vehicle warning and deliberates to
find mitigation action plans for the planning horizon h taking
into account the current states of all coalition members.
Construction of the MCTS search tree is the key component
of the individual decision making task.

1) ISM search tree structure: In ISM algorithm executed
by CAV i, a node n in MCTS search tree includes following
parameters at time tk (tk represents the time at which action
aitk from the mitigation action plan αih is executed):
• n.stk : the joint state of the coalition at time tk
• n.sitk : the individual state of CAV i at time tk
• n.aitk−1

: the individual action for CAV i taken at time
tk−1

• n.V : a map indexed by (j, ajtk−1
),∀j ∈ C\i that stores

the sum of rewards received while simulating action
ajtk−1

for CAV j at time tk−1 in all simulations that
include node n

• n.C: a map indexed by (j, ajtk−1
),∀j ∈ C\i that stores

the number of simulations in which action ajtk−1
was

selected for CAV j at time tk−1 in all simulations that
include node n

• n.ν: a value that corresponds to the sum of cumulative
rewards of all simulations that include node n

• n.cnt: the visit count of node n
• n.nparent: the parent node of node n
• n.Rtemp: a map indexed by IDs of the coalition mem-

bers and corresponds to the reward values received at
this node by each coalition member during the current
MCTS iteration

• n.nparent is the parent node of node n
• n.nchildren is the set of child nodes of node n

We initialize the root node nµ of the search tree with
the current joint state nµ.st1 , CAV i’s current individual
state nµ.s

i
t1 . Other variables nµ.V , nµ.C, nµ.ait0 , nµ.at0 ,

nµ.nparent, nµ.nchildren are set to null where as nµ.ν and
nµ.cnt are set to zero. The most important functions of ISM
algorithm executed by CAV i are outlined in Algorithm 1.

Algorithm 1 ISM

Input: nµ, A
1: k ← 1
2: while maximum number of iterations are not executed

do
3: 〈nl, k,R〉 ← ISM-SelectionPolicy(nµ, k, A)
4: if nl.cnt 6= 0 then
5: 〈nl, k,R〉 ← ISM-ExpansionPolicy(nl, k, A,R)
6: end if
7: R ← ISM-SimulationPolicy(nl, k,R)
8: ISM-BackpropagationPolicy(nl,k,R)
9: end while

We describe the four main steps of ISM algorithm in the
next sections.

2) ISM selection policy: Starting from the root node nµ,
we consecutively select nodes in each step using UCB1
algorithm [18] applied over nchildren using node statistics
ν and cnt in step 5 and 6. The child node n that is selected
automatically determines action aitk for current CAV i. To
select actions ajtk of other coalition members j ∈ C\i, we
apply UCB1 algorithm over the stored action reward values
V (j) and the count values C(j) in step 8. aitk combined with
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a
C\i
tk

forms the joint action set atk , which is then applied to
the joint state set stk of the parent node nparent to derive n’s
joint state set stk+1

in step 10. We compute separate reward
values for all coalition members and store it in Rtemp array.
The values in Rtemp are then used to update the cumulative
reward R.

Algorithm 2 ISM-Selection Policy

Input: nµ, k, A
Output: n, k,R

1: n← nµ
2: R ← 0
3: repeat
4: aitk ← UCTAction(Ai, n.nchildren.v, n.nchildren.cnt)
5: n← node with aitk action from n.nchildren
6: for j in C\i do
7: n.ajtk ← UCTAction(Aj , n.V (j), n.C(j))
8: end for
9: n.stk+1

← ComputeState(nparent.stk , n.atk)
10: n.Rtemp ← ComputeReward(nparent.stk , n.stk+1

, n.atk)
11: R ← R+ n.Rtemp(i)
12: for j in C\i do
13: R ← R+ λ · n.Rtemp(j)
14: end for
15: k ← k + 1
16: until n is a leaf node

3) ISM expansion policy: To expand a node n in the tree,
we first compute new individual states sitk+1

using the current
individual state sitk and each valid individual CAV action aitk .
The validity of actions is determined using the preconditions
listed in Table I. For an individual action space size of 5,
up to five child nodes are added in nchildren. The task of
computation of joint states stk+1

for these child nodes as
well as the selection task of the child node is left to ISM-
SelectionPolicy call in step 6, which uses UCB1 algorithm
to select the actions for the other coalition members and
computes the corresponding joint states.

Algorithm 3 ISM-Expansion Policy

Input: n, k,A,R
Output: nl, k,R

1: for aitk in Ai do
2: sitk+1

← computeState(n.sitk , atk)

3: nchild ←createNode(aitk , s
i
tk+1

)
4: n.nchildren ← n.nchildren ∪ nchild
5: end for
6: 〈nl, k,R〉 ← ISM-SelectionPolicy(n, k,A)

4) ISM Simulation policy: We perform the simulation step
starting from a leaf node nl of the MCTS tree. We select the
joint action set atk randomly from the joint action space A.
The next state stk+1

is derived from the current node’s joint
state stk and the sampled joint action atk . Using the derived
joint state, we create a new child node nchild. We compute
separate reward values for all coalition members in Rtemp

array which is later used to update the cumulative reward
R. Here, note that nchild is not added to the MCTS tree.
This procedure is performed until a terminal node is found.
A node is considered terminal when a collision among the
coalition members is detected or the planning horizon h is
reached.

Algorithm 4 ISM-Simulation Policy

Input: n, k,R
Output: R

1: repeat
2: atk ← RandomSelection(A)
3: stk+1

← ComputeState(n.stk , atk)
4: nchild ← ExpandSingleChildNode(n, atk)
5: Rtemp ← ComputeReward(n.stk , nchild.stk+1

,
nchild.atk)

6: R ← R+Rtemp(i)
7: for j in C\i do
8: R ← R+ λ ·Rtemp(j)
9: end for

10: n← nchild
11: k ← k + 1
12: until n is a terminal node

5) ISM Backpropagation policy: During the backpropa-
gation step, the cumulative reward computed at the end of
the simulation step is used to update n.ν and n.cnt values at
each node in the reverse path from the leaf to the root. Values
in V and C are also updated using the values in Rtemp for
the actions that were selected during the current iteration for
the other coalition members. Additionally, all the joint state
values s as well as the action values of the other coalition
members aC\itk

for all the nodes along the reverse path are
set back to null in their respective state parameter vectors
except at the root node.

Algorithm 5 ISM-Backpropagation Policy

Input: n, k,R
1: while n 6= nµ do
2: n.cnt← n.cnt+ 1
3: n.ν ← n.ν +R
4: for j in C\i do
5: n.V (j, n.ajtk)← n.V (j, n.ajtk) + n.Rtemp(j)

6: n.C(j, n.ajtk)← n.C(j, n.ajtk) + 1
7: end for
8: n.stk ← null
9: n.a

C\i
tk
← null

10: n← n.nparent
11: k ← k − 1
12: end while

At the end of ISM execution, each CAV i estimates the
state-action value function Q∗ at node n using following
equation:

Q∗(nparent.s
i
tk−1

, n.aitk−1
) ≈ n.ν

n.cnt
(3)
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(a) Vehicle agents communi-
cate within communication ra-
dius in MATISSE

(b) Vehicle agent with long
range RADAR and short range
LiDAR in MATISSE

Fig. 1: Realistic simulation of CAVs in MATISSE

Each path in the MCTS tree from the root node to a leaf
node represents one mitigation action plan. Each CAV i
uses the computed Q∗ values to construct, rank and share
its mitigation action plans with the coalition leader, which
finds the best possible non-colliding action plan for the whole
coalition using the beam-search algorithm [9].

V. EXPERIMENTAL RESULTS

In this section, we evaluate the reliability and scalability of
the proposed ISM algorithm and compare it with the state-
of-the-art centralized algorithm proposed by [16], the leading
decentralized algorithm DeCoC-MCTS proposed by [19] and
the ASM-MCTS algorithm [9]. We first discuss the multi-
agent based simulation framework, the experimental setting
used to run the simulated experiments and then present the
results.

A. MATISSE

We created a CAV model and tested the algorithms in
MATISSE 3.0, a microscopic multi-agent based traffic simu-
lation system developed at the MAVS lab at UT Dallas [24].
The virtual CAV is implemented as an autonomous decision-
making agent. It has the capability to dynamically sense its
surroundings through simulated sensors (see Fig. 1b) while
communicating with other virtual CAVs through simulated
V2V communication (see Fig. 1a). During the simulation, the
user can modify a CAV’s properties (e.g., sensor range) and
behavior (e.g., speed) and witness the outcome in simulated
real-time.

B. Experimental setting

We have implemented and tested ISM, ASM-MCTS,
DeCoC-MCTS, and the centralized algorithm by Nakamura
et al. in MATISSE, the agent-based traffic simulator 1. In our
simulated experiments, a group of CAVs are navigating on
a three-lane straight highway at the speed of 2 units/cycle.
A unit refers to a unit of length in MATISSE, and a cycle
refers to one full simulation cycle. During the simulation,
we alter the behavior of one CAV (e.g., increase speed or
slow down) in a way that cause it to misbehave and have a
collision with one of the coalition members after the ”Time
To Collide” (TTC) cycles. When this misbehaving vehicle is
detected through simulated sensors, each coalition member

1Demo videos available at http://www.utdallas.edu/˜dhruv/
IVdemos

(a) Scenario 1: Misbehaving ve-
hicle accelerates from behind
the coalition

(b) Scenario 2: Misbehaving ve-
hicle stops in front of the coali-
tion

(c) Scenario 3: Misbehaving ve-
hicle accelerates or stops in the
middle of the coalition

Fig. 2: Placement of coaltion members (yellow) and the
misbehaving vehicle (red) in tested scenarios

executes the selected algorithm to find its collision-avoiding
trajectory for a planning horizon h. The TTC values in
these simulated experiments are uniformly selected from {10
cycles, 15 cycles, 30 cycles} to simulate different emergency
levels.

At the maximum TTC of 30, the collision is detected after
30 cycles. We set the planning horizon h = 60 cycles, twice
the maximum TTC. The reason is that the coalition members
should not only avoid the detected collision at TTC=30, but
avoid possible collisions even after TTC until the coalition
is out of the danger with respect to the misbehaving vehicle.

For ISM, ASM-MCTS, and DeCoC-MCTS, vehicle ac-
tions can only have a fixed duration ∆t. We set this action du-
ration to 10 cycles for realistic action execution in MATISSE.
Since the planning horizon is 60 and the action duration is 10,
each CAV deliberates to select next 6 actions. The centralized
algorithm by Nakamura et al. generates waypoints at each
time step that represent the vehicle trajectory . The duration
between two time steps is fixed in this algorithm. We set the
time step duration to 3 cycles. For the planning horizon of
60 cycles and time step duration of 3 cycles, a total of 20
waypoints are computed by the centralized algorithm.

C. Reliability results

We define reliability as a collision avoidance algorithm’s
ability to find a non-colliding action plan for CAVs. Since
the emphasis of the simulated experiments in this section is
on the reliability as opposed to the scalability, we consider
a small coalition of four vehicles. We test the algorithms on
three sets of scenarios which differ on the position and speed
of the misbehaving vehicle (see Fig. 2), as listed below:
• Scenario 1- The misbehaving vehicle is positioned

behind the coalition and speeds up at 5 units/cycle.
• Scenario 2- The misbehaving vehicle is positioned in

front of the coalition and comes to a full stop at 0
units/cycle.

• Scenario 3- The misbehaving vehicle is surrounded by
coalition members and either speeds up at 5 units/cycle
or comes to a full stop at 0 units/cycle.

We performed a total of 1056 simulated experiments, 264
experiments for each of the ISM, ASM-MCTS, DeCoC-
MCTS and the centralized algorithm by Nakamura et al.
Out of 264 experiments for each algorithm, 108 experiments
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were performed for each of scenario 1 and scenario 2, and 48
experiments were performed for scenario 3. In experiments
for scenarios 1 and 2, we were able to consider various
distances between the misbehaving vehicle and the coalition
vehicles. For scenario 3, the number of experiments is
smaller, because the misbehaving vehicle’s position (i.e.,
inside the coalition) limits the number of options.

The processing times to compute the solution are set to
5s, 10s, 20s, 40s. Although these values are not real-time
implementable in emergency situations, they are comparable
to the processing times of current state-of-the-art centralized
and decentralized algorithms. Each experiment’s result is
considered a success if the algorithm is able to find a
collision-free solution for the planning horizon, otherwise
the result is considered to be unsuccessful. Fig. 3 shows the
success rate vs the processing time for each algorithm for
scenarios 1-3.

For scenario 1, we can see that the centralized algorithm’s
success rate is close to 1. ISM has a significantly higher
success rate than the ASM-MCTS and DeCoC-MCTS. For
higher processing time values, ISM even outperforms the
centralized algorithm by Nakamura et al.

For scenario 2, we can see that the centralized algorithm’s
success rate is the lowest. In this scenario, lane change
movements are essential for the collision avoidance. However
the centralized algorithm does not include some important
constraints required for checking the collisions that occur
during lane change movements, which explains the low
success rate. ASM-MCTS has slightly higher success rate
than the centralized algorithm. ISM has the highest success
rate in this scenario as well.

In scenario 3, the misbehaving vehicle is positioned inside
the coalition and either accelerates or comes to a full stop.
We can see that the ISM performs the best followed by
the centralized algorithm and ASM-MCTS. DeCoC-MCTS
gives the lowest success rate for this scenario. An important
observation is that ISM has a positive correlation with the
allowed processing time, as the success rate always increases
with the increase in the processing time.

D. Scalability experiments

We define scalability as the maximum number of vehicles
for which the algorithm can complete its execution in a
reasonable amount of time. We aim to compare the scalability
of each of the algorithms for different types of misbehavior
such as acceleration or deceleration by the misbehaving
vehicle. For the simulated experiments performed to compare
the scalability of different algorithms, we only consider
scenario 1 and 2 as described in Section V-C. We did not
consider scenario 3, as it differs from scenario 1 and 2 only in
the misbehaving vehicle’s position but not in the misbehavior
type. We fix the processing time allowed for each algorithm
to a maximum of 60 seconds.

Fig. 4 shows that the centralized algorithm can find
solutions for the coalitions of 4 and 3 vehicles for scenarios
1 and 2 respectively. DeCoC-MCTS can find solutions for
the coalition of 6 vehicles for both scenarios. These numbers
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(a) Scenario 1: The misbehaving vehicle is accelerating from behind
a coalition of four CAVs.
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(b) Scenario 2: The misbehaving vehicle comes to a full stop in front
of a coalition of four CAVs.
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(c) Scenario 3: The coalition member misbehaves in the middle of a
coalition of five CAVs.

Fig. 3: Reliability results

are hard limits for these algorithms, which means that the
computation becomes extremely slow and does not terminate
within the allowed processing time. For ASM-MCTS, the
plot shows values that are not the hard limits. In other
words, finding a solution for a larger number of vehicles
that the plotted values is computationally possible, but the
found solution may not be collision-free. These values for
ASM-MCTS are 7 vehicles for scenario 1 and 6 vehicles
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Fig. 4: Scalability results

for scenario 2. ISM considerably increases the soft limit of
ASM-MCTS to 10 vehicles for scenario 1 and 8 vehicles for
scenario 2. This is a significant improvement over the cen-
tralized algorithm by Nakamura et al. and DeCoC-MCTS.

VI. CONCLUSION

In this paper, we presented a cooperative action planning
method for a coalition of CAVs to find non-colliding action
plans in the presence of a misbehaving vehicle. In the two-
step decision-making method, each CAV first executes ISM
to derive ranked mitigation action plans, then the coordinated
plans are sent to the coalition leader to ensure that they
are collision-free. The proposed ISM algorithm improves the
reliability and the scalability of ASM-MCTS by intelligently
selecting actions for other agents at each MCTS node. It
also adopts the exponential branching factor reduction of
ASM-MCTS. We implemented ISM in MATISSE along
with the other state-of-the-art centralized and decentralized
approaches. Experimental results show that ISM improves
upon the centralized and the decentralized approaches in both
reliability and scalability metrics.

The presented algorithm only considers a single coalition
of CAVs. Our goal is to expand this approach to multiple
coalitions of CAVs and compare the performance for multi-
ple coalitions.
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