
Noname manuscript No.
(will be inserted by the editor)

A Collaborative Agent-Based Traffic Signal System
For Highly Dynamic Traffic Conditions

Behnam Torabi · Rym Z. Wenkstern ·
Robert Saylor

Received: October 10, 2018 / Accepted: date

Abstract In this paper we present DALI, a distributed, collaborative multi-agent
Traffic Signal Timing system (TST) for highly dynamic traffic conditions. In DALI,
intersection controllers are augmented with software agents which collaboratively
adapt signal timings by considering the feedback of all controller agents that may
be affected by a change. The model is based on a real-world TST and will be
deployed with minimal changes to the infrastructure. DALI has been validated by
traffic engineers as well as through extensive simulation of the City of Richardson’s
traffic network, comprising 128 signalized intersections. The experimental results
show that, in highly dynamic scenarios, DALI outperforms the conventional traffic
system used by the city as well as a state-of-the-art reinforcement learning-based
TST.

Keywords Intelligent Transportation System · Multi-Agent Systems · Coordi-
nated Decision Making

1 Introduction

Traffic signals impact virtually everyone, every day. Whether on congested or un-
congested routes, traffic signals punctuate every urban trip and have a direct
impact on drivers, the environment, and the economy.

Several Traffic Signal Timing systems (TST) have been proposed by manufac-
turers, traffic engineers and researchers. The purpose of a TST is to coordinate
individual traffic signals to achieve network-wide operational objectives. A TST
usually consists of several components: a) a number of intersection controllers, i.e.,
devices which control the operation of the intersection’s traffic signals; b) a com-
munication network and c) either a central computer or network of computers to

Behnam Torabi and Rym Z. Wenkstern
Department of Computer Science, University of Texas at Dallas
E-mail: behnam.torabi@utdallas.edu, rymw@utdallas.edu

Robert Saylor
Department of Traffic and Transportation, City of Richardson, TX
E-mail: robert.saylor@cor.gov

2 Behnam Torabi et al.

manage the system. Coordination between the controllers is either implicit (e.g.,
time-based) or explicit (e.g., through communication links).

Generally, real-world TSTs define the traffic signal timing problem as the search
for optimal values for a set of signal timing parameters (e.g., split, cycle length,
offset) that minimize or maximize an objective function (e.g., minimizing delay,
minimizing travel time, maximizing traffic flow). Many TSTs have been deployed
and used for decades. Traditional TSTs are controlled by a central computer [25,
24] which allows for the efficient coordination of intersection controllers under
normal traffic conditions. Unfortunately, these systems do not perform well when
unexpected traffic disruptions occur. Modern TSTs assign the optimization cal-
culations to the intersection controllers. Coordination between these controllers is
implicit and involves only direct neighbors. To ensure broader-level coordination,
most systems make use of a higher-level computer which explicitly communicates
constraints to the controllers.

From a research perspective, the application of the agent paradigm to traffic
signal timing has been of interest to researchers for some time. Distribution, auto-
nomy and coordination are agent properties that are naturally suited for the traffic
domain. In the context of traffic signal timing, researchers have proposed the use of
a variety of techniques (e.g., game theory [5,9], neural networks [36,8], fuzzy logic
[11,7]), and the commonly used reinforcement learning [15,6]. Most agent-based
models, architectures and methods are academic. As such, they often simplify the
signal timing problem and are validated on simple simulated traffic networks. The
very few agent-based systems that were validated on models of real cities using
real-world data [16,14] are based on assumptions that cannot be implemented in
a real-world setting.

In this paper we present DALI (Distributed Agent-based traffic Lights) a multi-
agent coordinated TST for congestion reduction. In DALI [40,41], each intersec-
tion controller is augmented with a software agent which continuously monitors
the state of the intersection. When congestion is detected, an agent does not make
decisions in isolation but consults with all intersection agents that may be af-
fected by a change and considers their feedback in the definition of a new timing
plan. This non-selfish, collaborative approach benefits all intersections potentially
concerned by congestion.

The system will be deployed in the City of Richardson, Texas, with minimal
changes to the traffic control infrastructure. Our work differs from existing so-
lutions in that: 1) it is directly implementable in an existing TST; 2) it is fully
decentralized and coordination between controllers is explicit, bidirectional, and
involves all controllers affected by a change; and 3) it has been validated by traffic
engineers as well as through an agent-based simulation of a real City, with the
largest road network simulated so far.

We implemented DALI in MATISSE 3.0 [39,38,3], a large-scale multi-agent
traffic simulation system, and interfaced a deployed controller with the simulator.
Experiments were run on a model of the City of Richardson comprising its 128
existing intersections. This model is a replica of the City’s road network and con-
siders the exact road structure; turn and through lanes; local, collector and service
roads; and detectors. We used real-world data provided by the City of Richardson
to run various experiments. The results show that our agent-based system outper-
forms the conventional traffic system used by the city as well as a state-of-the-art
reinforcement learning-based TST.

Title Suppressed Due to Excessive Length 3

The remainder of this paper is organized as follows: Section 2 reviews existing
works. Section 3 discusses the agent algorithms and Section 4 discusses the exper-
imental results.

2 Related Work

The traffic signal timing problem has been traditionally formulated as an optimiza-
tion problem, i.e., finding the optimal (or near-optimal) values for a set of signal
timing parameters with the goal of minimizing an objective function (e.g., vehi-
cle travel time, delay). A plethora of optimization techniques have been discussed
in the literature [29]. In addition to the traditional optimal-setting-search-based
methods, AI techniques such as game theory [5,9], neural networks [36,8], fuzzy
logic [11,7], and reinforcement learning [15,2,6,16] have been used to propose so-
lutions to the signal timing problem.

In the remainder of this paper, we restrict our discussion to TSTs that have
been successfully deployed and used, as well as applied academic works that have
been validated on realistic models, with real-world data.

In TSTs, signal timing optimizations are computed at the network/sub-network
level or at the intersection level.

2.1 Network or Sub-Network Level

TSTs in this category include the widely-used TRANSYT [25], SCOOT [24] and
SCATS [33], as well as TUC [12]. These systems are centralized, i.e., controllers are
managed by a central or several regional computers whose roles are to select the
appropriate signal plans. Traffic data is either collected over time then processed
(off-line system), or passed onto a computer in real-time (online system).

TRANSYT is an off-line system which uses historical data to calculate the net-
work’s performance index and then applies an optimization process to determine
whether changes to the signal settings will improve the index. The main limitation
of TRANSYT is the use of historical data which often results in timing plans that
are out-of-date and ill-matched to the current traffic conditions.

SCOOT is an online TST. Traffic data is collected in real-time and processed
every seconds. The data is passed on to a central computer which computes the
cycle flow profile used to predict queue lengths. The predictions are passed onto
an optimizer which determines the best pre-defined plan to reduce the likelihood
of congestion (i.e., a queue blocking the upstream junction).

SCATS [33] is one of the most widely used TST in the world. SCATS is struc-
tured as a three-layered hierarchical system with a control center at the highest
level, followed by regional computers in the next layer and local intersection con-
trollers at the lower layer. The central computer monitors the system performance
whereas the regional computers execute area-based adaptive strategies. When co-
ordination is deemed necessary, a regional master requests that a set of local
controllers execute a pre-defined coordinated plan. Changes to pre-defined plans
are done manually by traffic engineers.

4 Behnam Torabi et al.

TRANSYT, SCOOT and SCATS were primarily designed to respond to time-
of-day and long-term variations in traffic. Their strategy is based on increasing the
timings at intersections and does not account for shortening or skipping a phase.
In addition, SCOOT and SCATS make use of real-time measurements from the
intersections’ incoming roads only. As such these systems are not adequate to deal
with unexpected traffic disruptions.

TUC [12] is a recent centralized TST which formulates the traffic control prob-
lem as a Linear-Quadratic optimal control problem. TUC considers all traffic in-
tersections simultaneously through the application of a single matrix equation.
Results show that TUC is able to achieve highly efficient and extremely simple
coordinated control strategies in large traffic networks. Although the system was
deployed in the Glasgow area and has proven to be efficient, its centralized ar-
chitecture requires that the strategy be completely re-designed (i.e., all control
matrices be re-calculated) when the traffic network is modified or expanded.

2.2 Intersection Level

TSTs in this category break the signal optimization problem into sub-problems
which are assigned to intersection controllers.

2.2.1 Conventional TSTs with No Coordination

Several academic papers have proposed agent-based solutions where isolated smart
intersection controllers execute decision making algorithms to benefit their respec-
tive intersections [2,27,10,26,42,15]. The proposed approaches have been validated
on simple simulated grid networks or single intersections, using simplistic assump-
tions about traffic. In addition, optimizations at isolated intersections (without
any knowledge about other intersection states) do not guarantee an optimization
at the network level.

2.2.2 Conventional TSTs with Implicit Coordination

PRODYN [21]’s optimization at the intersection level uses improved forward dy-
namic programming with constraints on maximum and minimum greens. The
coordination between controllers is implicit. It is performed by a) simulating a
specific intersection output as soon as the optimization is computed, and sending
the simulation output to each downstream controller; b) using the output message
from upstream controllers at the next time step to forecast arrivals. Although
PRODYN’s approach is conceptually applicable to an entire set of intersection
controllers, the exponential complexity of dynamic programming limits its appli-
cability to only a few intersections.

OPAC (Optimized Policies for Adaptive Control) [18] was the first compre-
hensive strategy to be developed in the U.S. for real-time, adaptive TST. OPAC
has gone through several development cycles ranging from OPAC I to OPAC-VFC
(Virtual Fixed Cycle). OPAC’s intersection controller strategy features a dynamic
optimization algorithm that calculates signal timings to minimize a performance
function for delay and vehicle stops. The controller’s algorithm uses measured as
well as predicted traffic data. It determines phase durations that are constrained

Title Suppressed Due to Excessive Length 5

only by minimum and maximum green times. Similarly to PRODYN, OPAC’s ear-
lier versions implement implicit coordination. OPAC suffers from the limitations
of dynamic programming.

2.2.3 Conventional TSTs with Explicit Coordination

In OPAC-VFC, the coordination is explicit and is achieved through communication
with a central system responsible to identify “critical intersections” and optimizing
the cycle length for a group of intersections.

RHODES [28] decomposes the traffic problem into three hierarchical levels.
The highest level is the “dynamic network loading” model which captures the
slow varying characteristics of traffic (e.g., road closures), and the route selection
of travelers. The middle level is the “network flow control” which captures traffic
flow characteristics in terms of platoon of vehicles and their speed. The lower level
is the “intersection control” which captures fast varying traffic characteristics in
terms of individual vehicles. Each level makes use of prediction models. RHODES
and OPAC do not employ defined traffic cycles or signal timing plans. They utilize
traffic flow models that predict vehicle arrivals at the intersection, and adjust the
timing of each phase to optimize an objective function. Because they emphasize
traffic prediction, these systems can respond to the natural statistical variations
in traffic flow as well as to flow variations caused by traffic incidents or other
unpredictable events. Intersection control equipment for these systems is more
complex and not readily available in the field.

2.2.4 AI-Based TSTs

With respect to intersection-level TSTs that implement AI-based techniques, most
recent approaches are research-oriented and heavily based on the use of the multi-
agent system paradigm. The core concept for these systems is that intersection
controllers are controlled by autonomous software agents that are capable of inter-
acting with one another to achieve a local or global goal. Models and architectures
have been presented [17,34], and solutions proposed [6,31,30,1]. Unfortunately,
these solutions are based on assumptions that simplify the traffic signal optimiza-
tion problem and were validated on simple networks. Other systems such as [19,
22] consider real-world traffic constraints but were validated on simple grid-based
networks. Only a very few multi-agent solutions have considered the full spec-
trum of real-world traffic constraints and were deployed or validated on simulated
models of real cities. We discuss them below.

In SURTRAC [35,43], the intersection control optimization is formulated as
a scheduling problem where each intersection is considered as a single machine,
and platoons of vehicles as “non-divisible” jobs. Intersection controllers receive
information about incoming vehicles from their direct neighbors and use forward
dynamic programming to calculate near optimal schedules. In SURTRAC, the
interactions are limited to traffic-data exchange between direct neighbors, and
scheduling is done in isolation, at the intersection level. In addition, from a deploy-
ment perspective, advanced detectors placed on the upstream end points of entry
approaches are needed. The SURTAC approach is extended in [22] to incorporate
bi-directional information exchange whereby agents communicate their outflows to
the downstream neighbor agents as a prediction of future load, and downstream

6 Behnam Torabi et al.

agents communicate their current congestion level to upstream agents. Communi-
cations and decision making only consider direct neighbors and the approach has
been validated on a simple two-way grid network including 24-intersections.

With respect of RL-based approaches, the basic premise is that traffic signal
timing is not pre-defined, but agents learn the appropriate traffic signal settings.
In [13], Dusparic and Cahill discuss DWL, a multi-agent RL-based algorithm for
multi-policy optimization. In DWL, agents collaborate to satisfy multiple hetero-
geneous policies simultaneously (e.g., prioritize buses, reduce pollution). An agent
uses a combination of Q-learning and W-learning processes for each of its local
policies, and to learn the suitability of its actions for each of its direct neigh-
bor’s policies. Collaboration is implicit and restricted to immediate neighbors. It
is achieved through the concept of “remote policy”. With respect to traffic sig-
nal timing, the authors state that the optimization is related to phase selection
but no details is provided about the process. The emphasis of this paper is more
on the RL-based multi-policy optimization than signal timing optimization. DWL
was evaluated on a simulated map of Dublin’s inner city including 62 signalized
intersections. The policies used in the evaluation are a policy that optimizes global
waiting time and a policy that priotitizes public transport vehicles. Experiments
ran using artificially generated data show that DWL outperforms the traditional
fixed-timed approach and the Simple Adaptive Technique [32].

In [14], the authors extend DWL to consider the optimization of phase duration.
This optimization is only possible if more fine-grained traffic data (i.e., precise
traffic counts) is available. The extended DWL called REALT was evaluated in
VISSIM [20] on a simulated model of Cork City comprising six intersections. The
same policies as in [13] were implemented. Experiments ran using real-world data
show that REALT outperforms SCOOT in terms of delay and number of stops.

El-Tantawy et al. [16] present a coordinated multi-agent reinforcement learn-
ing architecture called MARLIN-ATSC. In MARLIN-ATSC, agents can operate
in either independent or integrated mode. Coordination is implicit and achieved
through multi-agent modular Q-learning. In modular Q-learning, the state space
is partitioned into partial state spaces comprising two agents. An agent learns a
joint policy with only one of its direct neighbors. With respect to traffic signal
timing, the optimization is related to the selection of a phase among a set of pre-
defined phases. MARLIN-ATSC was tested on a simulated network of the Lower
Downtown Toronto network comprising 59 intersections. Real-world data for about
25000 vehicle trips during morning peak hours was used to evaluate the system.
Experimental results show that MARLIN-ATSC reduces the average intersection
delay compared to a basic signal timing used by the City of Toronto. The main
drawback of MARLIN-ATSC is the assumption that an intersection controller can
only consider the interest of one immediate neighboring controller.

In addition to the limitations discussed above, both [16] and [14] assume that
the systems may have variable phasing sequence. While this assumption may be
reasonable in a simulated environment, it is not acceptable in a real-world setting
[23]. A variable phasing sequence can lead to endless greens for phases with con-
tinuous demand.
In this paper, we present DALI, a coordinated agent-based traffic signal timing
model for alleviating urban traffic congestion. Our proposed model is implemented
in MATISSE 3.0, a large-scale multi-agent based simulation system. The unique
characteristics of DALI are: 1) it is defined based on real-world parameters and

Title Suppressed Due to Excessive Length 7

constraints of an existing TST, and will be deployed as an extension of that TST;
2) it is fully decentralized and employs explicit controller-to-controller coordina-
tions that span more than the direct neighbors. As such, it considers the feedback
of all agents that may be affected by a potential signal timing change; 3) unlike
multi-agent RL systems, its does not allow variable phasing sequence. In addition,
DALI’s signal timing optimization involves more than phase selection; and 4) it
has been validated by traffic engineers as well as through extensive agent-based
simulation of a real city with the largest road network simulated so far.

3 Agent Algorithms

In DALI, agents communicate with each other through direct links and do not have
a supervising agent to oversee coordination. Agents have knowledge of the traffic
network topology. They receive information about the incoming traffic flow from
their neighboring controllers and determine the outgoing traffic flow based on the
data sensed by their inductive loops which are positioned a few feet before the stop
bar (see Figure 2). Intersections are assigned weights to indicate their criticality in
the traffic network. By default, agents execute a pre-timed, semi-actuated or fully-
actuated strategy. The choice of strategy depends on the intersection’s attributes
and the time of day. At the same time, they observe the status of traffic at their
respective intersections. If they detect congestion they execute the DALI strategy
[40,41]. Before discussing the DALI model and the agent’s algorithms, we first give
a brief overview of the traffic engineering terminology.

3.1 Concept Definitions

The definitions, given in this section are based on the U.S. Department of Trans-
portation Traffic Signal Timing Manual [23] and the City of Richardson’s Traffic
& Transportation procedures.

Timing Parameters

Phase: A controller timing unit associated with the control of one or more
movements (i.e., through movement, right turn movement) at an intersection.
Most controllers sold today provide eight phases to serve standard four-legged
intersections (see Figure 1).

Minimum Green: The first timed portion of the green interval which may be
set in consideration of the number of vehicles between the phase detector and
the stop line.

Maximum Green: This time setting defines the maximum length of time that
a phase can be green where there is a demand for a conflicting vehicle flow.

8 Behnam Torabi et al.

Fig. 1 Standard phases at a four-legged intersection.

Coordination of traffic signal phases

It is the ability to synchronize multiple intersections to enhance the operation of
one or more directional movements in a traffic system. In general terms, there
are three basic parameters that, when taken together, define a coordinated traffic
signal plan. These are:

Cycle Length: This is the total time to complete one sequence of signalization
around an intersection.

Offset:This is the time relationship, expressed in seconds, between coordinated
phases at subsequent traffic signals.

Split: This is the time assigned to a phase during coordinated operations.

It is important to note that in the context of traffic management, coordination
refers to the setting of the above mentioned parameters. It does not correspond to
the coordination concept used in multi-agent systems.

Traffic Signal Operation Modes

Traffic signals operate in various modes.

In pre-timed mode, phases and cycles are pre-set according to a predetermined
schedule, based on historic traffic patterns.

In semi-actuated mode, detectors are placed only on the main street approaches.
The main street has green until the actuation of a side street detector. The
side street then receives a green phase until either all vehicles are served (gap
out) or a preset maximum green is reached (max out).

In fully actuated mode, all approaches have detectors. The signal phases are
controlled by detector actuations. Minimum greens and maximum greens are
specified for each phase.

Title Suppressed Due to Excessive Length 9

3.2 Model Definition

T = {t1, .., ti} is the set of time-stamps at which traffic conditions are evalu-
ated.

C = {c1, .., cn} is the set of intersection controllers. An intersection controller
cn is assigned a weight ω which corresponds to its priority in the road network.

Rd = {rc1,c2 , .., rcm,cn} is the set of road segments between intersections.

LNrcm,cn = {rcm,cn .ln1, .., rcm,cn .lnw} is the set of lanes for road segment
rcm,cn .

PHcn = {phcn,1, .., phcn,k} is the set of phases for the intersection controlled
by cn.

A phase phcn,k is defined in terms of γ, the split time, ν, the minimum green
time, η, the maximum green time, the yellow time, the red time and LNphcn,k ,
the set of lanes it applies to.

p(rcm,cn .lnw, rcn,cp .lnu) is the probability that a vehicle exiting lane w in road
segment rcm,cn enters lane u in road segment rcn,cp . This probability is com-
puted by traffic engineers based on historical data.

p(rcm,cn , rcm,cn .lnw) is the probability that a vehicle which enters road seg-
ment rcm,cn , leaves it from lane w. This probability is also computed by traffic
engineers based on historical data.

rateOut(ti, τ, rcm,cn .lnw) is the rate of vehicles (per second) that can leave the
intersection through lane w of road segment rcm,cn within the time interval τ
that ends at time ti.

rateIn(ti, τ, rcm,cn) is the rate of vehicles (per second) that enter road segment
rcm,cn in the time interval τ that ends at time ti.

ξrcm,cn .lnw(ti, τ) is the traffic flow rate for lane rcm,cn .lnw, i.e., the ratio of
vehicles getting in and leaving the lane. It is defined as:

ξrcm,cn .lnw(ti, τ) =
rateIn(ti, τ, rcm,cn)× p(rcm,cn , rcm,cn .lnw)

rateOut(ti, τ, rcm,cn .lnw)

3.3 DALI Agent Algorithms

In DALI, agents collaborate with one another to dynamically respond to traffic
changes. In this section we discuss the agent algorithms at the basis of the collab-
orative approach. The algorithms make use of parameters (i.e., a, b, h, d, e, f and
g) which are defined by traffic engineers based on historical traffic data.

At any given time, if an agent determines that its intersection is congested, it
deliberates and defines a timing plan to alleviate congestion by adjusting splits.

10 Behnam Torabi et al.

Fig. 2 cn determines rateOut and receives rateIn from cm.

Then, it broadcasts the plan to the neighboring agents. Upon receipt, the agents
evaluate the plan by calculating its effect on each of their intersections’ outgoing
roads. They in turn communicate the information with the affected neighboring
agents. And the process iterates until it either reaches a) an intersection within
the city boundaries for which the effect of the request is below a threshold or b) an
exit junction at the city’s boundaries. The information is then propagated back,
and at each stage of the propagation, the agents consider each other’s feedback
for their decision on their level of agreement with the plan, i.e., a value which
indicates the extent to which an agent can agree with the terms of the plan. The
initiating agent then decides whether to execute or ignore the plan. It proceeds
by informing the agents of its final decision and, in case the plan is to be applied,
requests that they update their timing accordingly.

Algorithm 1 Controller Congestion Reduction
Require: PHcn , ti
1: for all phcn,k ∈ PHcn do
2: EvaluateTraffic(phcn,k, ti : TotalInstCong)

3: if TotalInstCong
b

> d then
4: GenerateP lan(phcn,k, ti : plannew)
5: RequestForEvaluation(phcn,k, plannew : Ψcn)
6: if Ψcn > h then
7: ExecuteP lan(plannew)
8: end if
9: end if

10: end for
11: if ReceiveRequestForEvaluation(cp, κrcp,cn , κphcq,j) then

12: ComputeLevelOfAgreement(κrcp,cn , κphcq,j)

13: end if
14: if ReceiveRequestForExecution(cp, plannew) then
15: AdjustT iming(plannew)
16: end if

3.3.1 Detecting Congestion

Intersection controller cn continuously evaluates the traffic state by executing Al-
gorithm 1 to determine if a re-timing operation is necessary. As shown in Figure

Title Suppressed Due to Excessive Length 11

Fig. 3 PercentCong of phase phcn,k.

2, at each ti, cn receives rateIn (determined by its neighbors’ detectors) and de-
termines rateOut.

Algorithm 2 Evaluate Traffic
Require: PHcn , ti
1: for all phcn,k ∈ PHcn do
2: TotalInstCong ← 0
3: for j = 0 to b do
4: δ = 0
5: for each rcm,cn .lnw ∈ LNphcn,k do

6: δ ← ξti−j,rcm,cn .lnw + δ
7: end for
8: Congti,phcn,k ← δ

9: if Congti,phcn,k ≥ a then

10: TotalInstCong ← TotalInstCong + 1
11: * TotalInstCong Represent Sum Over InstantCongestion
12: end if
13: end for
14: end for

At time ti, controller cn computes Congti,phcn,k as the sum of throughputs for
the set of lanes controlled by phcn,k.

Congti,phcn,k =
∑

rcm,cn .lnw∈LNphcn,k

ξti,rcm,cn .lnw

If Congti,phcn,k is greater than threshold a, then cn considers that there is an
instant congestion and assigns the value of 1 to InstantCongestion defined as:

InstantCongestionti,phcn,k =

{
1 Congti,phcn,k ≥ a
0 Congti,phcn,k < a

It proceeds by considering the past b evaluation cycles to determine the per-
centage of evaluation cycles in which the phase was congested (see Figure 3). This
is defined as:

PercentCongti,phcn,k =

∑i
j=i−b InstantCongestiontj ,phcn,k

b
× 100

12 Behnam Torabi et al.

Fig. 4 Overview of the network in the case study.

Fig. 5 Intersection assigned to c2.

If PercentCongti,phcn,k > d then the road lanes controlled by phcn,k are con-
sidered to be congested.

To illustrate the various steps, we use a section of the City of Richardson’s road
network (See Figure 4). As shown in Figure 5, c2 has four incoming roads. The four
phases for c2’s intersection are {phc2,1, phc2,2, phc2,3, phc2,4}. These phases apply
as follows: phc2,1 for rc6,c2 , phc2,2 for rc3,c2 , phc2,3 for rc5,c2 and phc2,4 for rc1,c2 .
The phases have the following attribute values: the split γ = 40, the minimum
green ν = 20, the maximum green η = 60. Thresholds a, b and d have the values
of a = 0.6, b = 100 and d = 80.

In this example, c2 evaluates the status of its intersection at the time-stamp
t4100 and within the time interval τ = 500. It starts with phase, phc2,1 and cal-
culates the average traffic throughput Congt4100,phc2,1 for the set of road lanes
that phc2,1 controls. Given that rateOut(t4100, 500, rc6,c2 .ln3) = 0.8, p(rc6,c2 ,
rc6,c2 .ln3) = 0.2 and rateIn(t4100, 500, rc6,c2) = 2.4, the value of ξt4100,500,rc6,c2 .ln3

is:

Title Suppressed Due to Excessive Length 13

ξt4100,500,rc6,c2 .ln3
= 2.4×0.2

1 = 0.48

For the sake of illustration, we assume that Congt4100,phc2,1 = 0.83 which is
greater than threshold a = 0.6. Controller c2, then retrieves the calculated values
of Cong between time stamps t4100 and t4000 and finds that 91 of them are greater
than a. Therefore,

PercentCongt4100,phc2,1 = 91
100 × 100 > 80

Consequently, c2 detects congestion on phase phc2,1 and deliberates to define a
new plan.

3.3.2 Generate a New Plan

The controller deliberates to determine the value of a new split that will alleviate
congestion on phcn,k. This is achieved in step 7 of Algorithm 3. The value of the
new split is calculated as:

plannew.phase.γ = plancur.phase.γ × (e+

∑i
j=i−ν Congtj ,phcn,k

ν
× f)

In order to determine the value of a new split, cn starts by determining the
severity of its congested status by computing the average congestion level over

the last ν evaluation cycles (
∑i
j=i−ν Congtj ,phcn,k

ν) and increases its current split
time (plancur.phase.γ) proportionally to this value. The more congested a road
segment has been, the more additional green time is needed to release vehicles
and alleviate congestion. e and f coefficients defined by traffic engineers based
on historical data. They regulate the influence of the traffic throughput and the
current split time for the new split time. Values of cycle length and offset change
in the new split. If plannew.phase.γ is greater than the maximum allowed split

Algorithm 3 Generate Plan
Require: phcn,k, ti
Ensure: plannew
1: plannew.phase← phcn,k
2: χ← 0
3: for j = i− ν to i do
4: χ← χ+ Congtj ,phcn,k
5: end for
6: χ← χ

ν
7: plannew.phase.γ ← plancur.phase.γ ∗ (e+ χ ∗ f)
8: if plannew.phase.γ > phcn,k.γMAX then
9: plannew.phase.γ ← phcn,k.γMAX

10: end if

time γMAX defined for phase phcn,k as:

phcn,k.γMAX = phcn,k.η + phcn,k.ε+ phcn,k.ξ

then its value is set to phcn,k.γMAX (step 9).

14 Behnam Torabi et al.

In the example above, we assume that the average Cong for phase phc2,1 in the
last ν = 10 evaluation cycles is 0.9. Given that e = 1 and f = 0.33, c2 defines a
new plan for phc2,1, and computes plannew.phase.γ as:

plannew.phase.γ = 40 + (1 + 0.9× 0.33) ≈ 52

Therefore, c2 determines that it needs to increase phc2,1.γ by 12 seconds.

3.3.3 Request For Evaluation

cn determines the impact of executing the new plan on the neighboring inter-
sections in terms of κ, the increment in vehicle rate. This increment is com-
puted as the rate of vehicles that leave the intersection through lane rcm,cn .lnw
times the additional green time needed to alleviate the congestion computed as
plannew.phase.γ − plancur.phase.γ divided by the new green time. κrcm,cn .lnw is
calculated for road lane rcm,cn .lnw as:

κrcm,cn .lnw =
rateOut(ti, rcm,cn .lnw)

plannew.phase.γ
× (plannew.phase.γ − plancur.phase.γ)

κphcn,k for a phase phcn,k is defined as the sum of κrcm,cn .lnw for the set of lanes
controlled by the phase (Algorithm 4, Step 3). In the same way, κrcn,cp for a road
segment rcn,cp , is the sum of κrcn,cp .lnw (Algorithm 4, Step 10).
Controller cn proceeds by sending plannew, κrcn,cp and κphcn,k to each adjacent
controller cp for evaluation. κphcn,k corresponds to the increment in the rate of ve-
hicles that exits the road lanes controlled by phcn,k, in case the new plan is to be
executed. κrcn,cp corresponds to the portion of κphcn,k that goes to road segment
rcn,cp .

Algorithm 4 Request for Evaluation
Require: phcn,k, plannew
Ensure: Ψcn
1: κphcn,k ← 0

2: for each rcm,cn .lnw in LNphcn,k do
3: κphcn,k ← κphcn,k + κrcm,cn .lnw
4: end for
5: Ψcn ← 0
6: for each accessible neighbor cp , in parallel do
7: κrcn,cp ← 0

8: for rcm,cn .lnw ∈ LNphcn,k do

9: for rcn,cp .lnu ∈ LTrcm,cn .lnw do

10: κrcn,cp ← κrcn,cp + (p(rcm,cn .lnw, rcn,cp .lnu)× κrcm,cn .lnw)

11: end for
12: end for
13: Send(cp, κrcn,cp , κphcn,k)

14: Receive(cp, Ψcp)
15: Ψcn ← Ψcn + Ψcp
16: end for

Title Suppressed Due to Excessive Length 15

In the illustrative example, c2 proceeds by calculating κrc1,c2 .ln1
as:

κrc1,c2 .ln3
=

0.8× (52− 40)

52
= 0.18

Given that κrc6,c2 .ln2
= 0.32 and κrc6,c2 .ln1

= 0.16, κphc2,1 takes the value of 0.66.
Controller c2 then calculates the effect of executing a new plan on its neighboring
intersections, including c5. Assuming p(rc6,c2 .ln3, rc2,c5 .ln2) = 0.5 , p(rc6,c2 .ln3,-
rc2,c1 .ln1) = 0.5 , p(rc6,c2 .ln2,rc2,c5 .ln1) = 1 and p(rc6,c2 .ln2,rc2,c1 .ln1) = 0, κrc2,c5
is calculated as:

κrc2,c5 = 0.5× 0.18 + 1× 0.32 = 0.41

c2 then sends a request for evaluation to c5 with κrc2,c5 = 0.41 and κphc2,1 = 0.66.
This indicates that, by executing plannew, an additional 0.66 vehicle per seconds
(vps) will leave the road controlled by phc2,1, and out of the 0.66 vps, 0.41 vps
will enter rc2,c5 .

3.3.4 Compute Level Of Agreement

Upon receipt of a new plan, cn’s neighboring controller cp computes κrcp,cq for
each of its neighbor controllers cq and request that they each evaluate the plan.
The process propagates until at a given intersection, either the value of κ is smaller
than threshold g or the plan reaches the road network boundaries. Following this
step and recursively, each controller sends back its level of agreement in terms
of a real number Ψ , to the controller from which it has received the request. An
intermediate controller, cp, calculates Ψcp based on the existing traffic throughput,
its priority ω and the ratio of the received additional vehicle throughput.

A controller agent, cp, calculates the agreement level Ψcp based on the existing
traffic throughput, its priority ω and the ratio of the received additional vehicle
throughput. The core computation of the agreement level is cp’s capacity to handle
an extra load of vehicles which is computed as ratio of the rate of incoming vehicles
(rateIn(ti, τ, rcn,cp)) plus the expected additional vehicles (κrcn,cp), divided by
the rate of outgoing vehicles (rateOut(ti, rcn,cp .lnu))). This ratio is adjusted to
reflect decreasing values if the total rate of incoming vehicles is much higher than
the rate of outgoing vehicles. It is further adjusted to account for the criticality
ω(cp) of the intersection, i.e., the more critical the intersection and therefore the
higher the value of ω(cp), the more emphasized is the capacity value. The same

applies to
κrcn,cp
κphcn,k

which corresponds to the portion of the total additional load

that is expected to be received, i.e., the higher
κrcn,cp
κphcn,k

the more emphasized is the

capacity value.
x, y and z are coefficients that calibrate the influence of variables in Ψ . After

receiving the level of agreement from all affected neighbors, cp adds them to its
own level of agreement Ψcp and sends the value back to cn. The final decision is
made based on the value of Ψcn representing the opinion of all affected controllers
in the network.

In the illustrative example, c5 receives the request for the new timing plan. It
calculates Ψc5 using the current rateOut(t4100, 500, rc2,c5 .ln1) = 1, rateOut(t4100,,-
500, rc2,c5 .ln2) = 0.3, rateIn(t4100, 500, rc2,c5) = 1.2, p(rc2,c5 , rc2,c5 .ln1) = 0.8 and

16 Behnam Torabi et al.

Algorithm 5 Compute Level Of Agreement
Require: κrcn,cp , κphcn,k
Ensure: Ψcp
1: Ψcp ← 0
2: for rcn,cp .lnu ∈ LNrcn,cp do

3: Ψcp ← Ψcp + x × ω(cp) ×
κrcn,cp
κphcn,k

× (y − z ×
(κrcn,cp

+rateIn(ti,rcn,cp) ×p(rcn,cp ,rcn,cp .lnu)
rateOut(ti,rcn,cp .lnu)

)

4: end for
5: for each accessible neighbor cq from cp , in parallel do
6: κrcp,cq ← 0

7: for rcn,cp .lnu ∈ LNrcn,cp do

8: for rcp,cq .lnf ∈ LFrcn,cp .lnu do

9: κrcn,cp ← κrcn,cp + p(rcn,cp , rcn,cp .lnu)× p(rcn,cp .lnu, rcp,cq .lnf)× κrcn,cp
10: end for
11: end for
12: if κrcn,cp > g then

13: Send(cq , κrcn,cp , κphcn,k)

14: Receive(cq , Ψcq)
15: Ψcp ← Ψcp + Ψcq
16: end if
17: end for
18: Send(cn, Ψcp)

p(rc2,c5 , rc2,c5 .ln2) = 0.2. Ψc5 is calculated as:

Ψc4 = 1.0× 2.0× 0.41

0.66
× ((1− 1× (0.41 + 1.2)× 0.8

1
)+

(1− 1× (0.41 + 1.2)× 0.2

0.3
))

= −1.26

c5 proceeds by calculating κ for c3, c4. If κ is greater than threshold g, c5
requests that they evaluate the plan. c3 and c4’s responses are added to Ψc5 and
sent back to c2. Upon receipt of Ψc5 , Ψc1 and Ψc3 , controller c2 calculates Ψ2.
Negative values of Ψ are considered as a level of disagreement. Having Ψ2 = 2.34,
c2 executes the new plan and announces the execution to all controllers in the
network which in turn adapt their timing plans.

3.4 Special Cases

During the execution of the scenario discussed above, several exceptions may occur.
These include the following [37]:

1. A controller may receive more than one plan to evaluate at the same time.
In this case, the controller evaluates the plan sent by the controller with the
highest priority and halts the evaluation of other plans. If the plans were sent
by neighbor controllers having the same level of criticality, the controller selects
one according to a pre-defined criteria, e.g., the smaller controller ID.

Title Suppressed Due to Excessive Length 17

Fig. 6 Induction Loops and Vehicle Sensing Area.

2. A controller may receive more than one request to evaluate the same plan. In
the example mentioned above, executing c2’s plan will increase the throughput
of both rc2,c3 and rc5,c3 . This will result in c3 receiving an evaluation request
first from c2 and then from c5. Controller c3 evaluates the request from c2 and
stores the received additional throughput value. Then c3 considers the stored
value to evaluate the request of c5.

3. A controller may lose connection from the network and stop responding to
requests of evaluation. In this case, other agents assume that the disconnected
agent fully disagrees with any retiming plan.

4. When a plan gets rejected, the main agent generates a new plan by reducing
the split of the rejected plan and ask other agents to evaluate the new plan.

5. After executing a new timing plan, when the traffic situation goes back to
normal, the main agent switch back to the original timing plan and ask other
agents to do the same.

4 Evaluation

4.1 The City of Richardson’s Traffic Signal Timing System

The City of Richardson is located 15 miles north of downtown Dallas and is part of
the Dallas-Fort Worth Metroplex. The city has four major highways, eleven major
and 6 minor arterial roads and 128 intersections with traffic signals.

The 128 SCATS-based intersection control computers (i.e., traffic controllers)
are mounted in cabinets at intersections. They run Linux on an ATC-compliant
motherboard offering speed, performance and multi-thread capabilities. A central
traffic management center communicates with the traffic controllers via a WiMAX
wireless network operating in the licensed 4.9 GHz public safety band with about
2.5 GB/s total throughput. Controller-to-Controller communication links exist but
are not used in the current traffic system. Traffic controllers operate in various
modes. During the day, a variety of pre-timed plans designed to address variable
traffic patterns are executed based on traffic conditions. Past midnight, controllers
operate either in pre-timed, semi-actuated or fully-actuated modes depending on
the road types and the existence of a detection system.

Vehicles at an intersection are detected through inductive loops. An inductive
loop is a coiled wire that is formed into a loop and installed under the surface

18 Behnam Torabi et al.

Fig. 7 2D visualization of Richardson’s Traffic Network.

of roadways at appropriate distances before the stop bar based on the traffic and
roadway conditions (see Figure 6). When a vehicle passes over the loop or is
stopped within its area, a pulse is sent to the traffic signal controller signifying the
passage or presence of a vehicle. The controller stores the detection information
and the time of its occurrence in a local database.

The City of Richardson maintains a traffic count program which conducts
scheduled counts on major arterial roads as well as collector streets, i.e., roads
which move traffic from local streets to arterial roads. The traffic counts are used
for a variety of purposes including the definition of coordinated traffic signal timing
along arterial streets.

In order to define traffic signal timing plans, traffic engineers assign values to
cycle length, offset and splits based on historical data. Given that inductive loops
are positioned a few feet from the stop bar, the vehicles that can be realistically
detected are those that cross the inductive loop area. With the inductive loop
technology, a complete vehicle count on a road segment is not possible. In addition,
except for the induction loop area, the vehicle positions on road segments cannot
be obtained.

The measurements that are commonly used in Texas to evaluate the effectiveness
of a signal timing plan include delay, queue length and number of stops. In the
following sections, we discuss the evaluation of DALI with respect to delay. Similar
results were obtained for queue length [37]. Delay is defined as the increment in
a vehicle’s travel time caused by traffic control devices, compared with the travel
time if the vehicle was to maintain its expected speed in the absence of any control
device [4].

4.2 Simulation Setting

The experiments were run on a multicore PC (Intel Core i7 X980 CPU (3.33GHz),
6.00 GB, 64-bit Windows 7). A simulated model of the City of Richardson’s road
network was created in MATISSE. The model includes 1365 road segments and
the city’s 128 signalized intersections in addition to the 965 non-signalized inter-
sections. Figure 7 shows a 2-D representation of the traffic network. Tables 1 and 2

Title Suppressed Due to Excessive Length 19

summarize the types of signalized and non signalized intersections, classified based
on the number of incoming and outgoing lanes.

Table 1 Number of Signalized Intersection with various incoming and outgoing lanes

Type 1× 1 1× 2 1× 3 2× 2 2× 3 3× 3

Count 0 4 8 18 29 69

Table 2 Number of Non-Signalized Intersection with various incoming and outgoing lanes

Type 1× 1 1× 2 1× 3 2× 2 2× 3 3× 3

Count 533 241 175 16 0 0

Three simulation settings were run eight times for 86,400 simulation cycles rep-
resenting a 24-hour time period. The average delay for all vehicles was measured.
In the first and second experiment, we use real-world data provided by the City of
Richardson to simulate regular traffic patterns with and without accidents. In the
third and fourth experiment we simulate continuous random traffic patterns with
and without accidents. For all experiments, we compare the efficiency of DALI with
the SCATS-based system currently in use in Richardson (SCATS-R), and a model
of the RL-based MARLIN-ATSC [16] (MARLIN-R). To decrease the learning time
of MARLIN agents, we initialized the Q-values based on estimations derived from
historical data provided by the City of Richardson.

Experiment 1: Normal Traffic Conditions
In this experiment, we make use of the traffic data provided by the City of Richard-
son to determine the number of vehicles in the traffic network at any given time,
as well as their distribution in the network. This experiment is intended to analyze
the behavior of the three systems under nominal traffic conditions.

As shown in Figure 8, between the times of 00:30 am and 5:30 am DALI and
SCATS-R perform at the same level with respect to delay. This is due to the fact
that during this time period, traffic is very light and therefore DALI agents do
not perform any action. MARLIN-R agents perform better (53% delay reduction)
in this situation because of their flexibility in changing the traffic phases at any
time. As we progress during the day (i.e., 6:30 am to 8:30 am) the traffic flow
increases, and congestion is detected. DALI agents naturally collaborate with one
another to define and implement timing plans that meet the network conditions.
As such, DALI performs significantly better than SCATS-R (23% delay reduc-
tion). MARLIN-R performs slightly less than DALI. The simulation shows that
this is due to the fact that MARLIN-R agents do not handle heavy traffic in
small network areas with a large number of intersections efficiently. In those cases,
MARLIN-R agents give the right-of-way to vehicles without taking into account
the downstream roads which are congested.

20 Behnam Torabi et al.

Fig. 8 Average delay using traffic data from the City of Richardson

Fig. 9 Average delay with accident in peak morning hours using real traffic data

Experiment 2: Normal Traffic Conditions With Accident
Figure (9) shows the performance of the systems when an accident is triggered
at run time, during normal morning peak traffic. As expected, DALI handles the
traffic much better than SCATS-R (35% delay reduction). MARLIN-R agents are
unable to control the congestion created by the accident since they have no prior
knowledge of the unexpected traffic pattern. Similarly to Experiment 1, the sim-
ulation shows that, rather than leading the vehicles towards roads with lighter
traffic, MARLIN-R agents send vehicles to congested areas.

Title Suppressed Due to Excessive Length 21

Fig. 10 Average delay for random traffic patterns

Experiment 3: Continuous Random Traffic Conditions
In this experiment, the number of vehicles during the simulation remains constant
but new vehicles are added randomly while others randomly exit the traffic net-
work. This experiment is intended to illustrate random traffic patterns that are
unprecedented. The experiment was run with 100, 250, 500, 1000, 2000 and 3000
vehicles.

Figure (9) shows that when the traffic is light, MARLIN-R agents perform
(37%) better because they use a variable phasing sequence. They can extend the
current phase or switch to any other phase according to the changes in traffic. On
the other hand, SCATS-R controllers and DALI agents execute a fixed phase se-
quence. Therefore, all phases are executed even in cases where it is not necessary.
DALI and SCATS-R perform at the same level in lighter traffic conditions because
the controller agents do not detect congestion and therefore, do not change the
split. As the number of vehicles increases, DALI agents start to detect conges-
tion and collaborate with other agents for retiming. The collaborative retiming
procedure allows DALI to perform better than SCATS. As the number of vehi-
cles increases, MARLIN-R still perform better than SCATS-R. However, DALI do
better. This is due to the fact that MARLIN-R agents fail to handle heavy traffic
in small, condensed network areas.

Experiment 4: Continuous Random Traffic Conditions with Accident
Figure (11) shows the performance of DALI, SCATS-R and MARLIN-R in the
extreme situation where an accident is randomly triggered in unpredictable traffic
conditions. When the traffic is light, the three systems nearly act the same. As
traffic gets heavier, DALI operates better than the other two (20% decrease in
delay compared to SCATS-R and 12% decrease in delay compared to MARLIN-
R). When the number of vehicles reaches 3000, MARLIN-R operates worse that
SCATS-R (8% delay increase) because SCATS-R controllers are committed to

22 Behnam Torabi et al.

Fig. 11 Average delay for random traffic patterns with accidents.

giving green signal to all movements in a cycle whereas MARLIN-R agents lack
experience in dealing with new traffic conditions.

4.3 Hybrid Simulation

MATISSE is able to run hybrid simulations by retrieving real-time data from
deployed controllers. This data which includes the detector states (i.e., active,
inactive) and the traffic light state (i.e., green, yellow, red) is processed as follows:
when a detector state goes from active to inactive, MATISSE adds a vehicle in
the simulation at the detector’s position. It also visualizes the queue length at the
traffic light.

In the hybrid simulation, simulated vehicles enter the simulation through entry
points (represented as red arrows in Figure 12), and leave the simulation when they
reach the exit points (represented by green arrows in Figure 12). The destinations
of the simulated vehicles at the entry points are estimated based on the traffic
flow information at the exit points. The performance of DALI in the simulated
environment is evaluated by comparing the rate of simulated vehicles that exit the
simulated traffic network versus the real world.

4.3.1 Experiment

In this experiment, we create a simulated model of the Waterview corridor in
Richardson, which includes three intersections, Frankford Rd, Synergy Pkway and
Franklin Jenifer (see Figure 12). We connect MATISSE to the three real-world
controllers, run the hybrid simulation using DALI and compare the results with
the actual SCATS-R-based values provided by the controllers.

We ran the hybrid simulation for one week and compared the average queue
length and delay in the simulation with their actual SCATS-R counterparts. Figure

Title Suppressed Due to Excessive Length 23

Fig. 12 Arterial image of simulated intersections.

Fig. 13 Average incoming traffic flow at different times of work days.

13 shows the average traffic flow at different times of the days for network entrance
points. As expected, Waterview Parkway gets a rush in the morning from 7:00 AM
to 9:00 AM and in the evening from 4:00 PM to 6:00 PM. Waterview approaches
have approximately the same traffic flow during the day; however, traffic drops at
nights.

Table 3 shows the reduction in delay for different traffic flows. Similarly to
the previous experimental results, when the traffic is light, the average delay does
not change since DALI agents do not perform any action. When the traffic flow
increases, agents adapt by generating new plans and executing them. Therefore,
the traffic on roads with higher demand get more green which results in a decrease
of the average delay.

24 Behnam Torabi et al.

Table 3 Reduction in Delay for Different Traffic Flows

Traffic Flow (vph) 0− 200 200− 400 400− 600 600− 800

% Reduction in Delay 0 0 1.27 4.12

Traffic Flow (vph) 800− 1000 1000− 1200 1200− 1400 1400− 1600

% Reduction in Delay 7.15 10.79 17.96 20.81

Fig. 14 Delay Reduction For different traffic flows at different entrances.

Figure 14 shows the reduction in queue length for different flow rates at differ-
ent entry points. As illustrated, the queue length was drastically reduced on both
directions at Waterview. However, at the same time, the queue length increased on
approaches. The reason is that whenever the traffic flow increases on Waterview,
agents react by increasing the green time of the phases that control Waterview.
Therefore, the vehicles in the other directions receive less green time.

5 Conclusion

In this paper we presented DALI, a distributed collaborative multi-agent traffic
signal timing (TST) system for highly dynamic traffic conditions. DALI has been
validated on a simulated model of City of Richardson’s traffic network. The experi-
mental results show that the collaborative multi-agent controllers outperforms the
traditional SCATS-based system currently used by the City of Richardson. While
a simulated model of MARLIN performs better than DALI in stable traffic condi-
tions with light to normal traffic, the RL-based model does not operate efficiently
in two settings: 1) random traffic conditions and 2) nominal traffic conditions with
heavy traffic in condensed traffic network areas. Our goal is to investigate the
development of a hybrid model that will integrate some RL in the DALI agents.

This work is a first step towards the implementation of an agent-based TST
for the City of Richardson. Before the deployment of the first prototype, agent-

Title Suppressed Due to Excessive Length 25

to-agent communication costs need to be assessed. Our assumption is that, given
that the currently deployed SCATS controllers communicate through a WiMAX
network with a speed of up to 2.5 Gbps, direct agent communication may take
less than a tenth of a second, and communications for decision making no more
than a few seconds. Also, in its current form, the proposed agent-based TST does
not take pedestrians into consideration. Given that close to 90% of Richardson’s
population commutes by either driving alone or carpooling, it is reasonable to
assume that current pedestrian signal operations may not need to be modified.
Nevertheless, we plan to incorporate pedestrian signal timing in future versions of
our agent-based model.

References

1. Monireh Abdoos, Nasser Mozayani, and Ana LC Bazzan. Holonic multi-agent system for
traffic signals control. Engineering Applications of Artificial Intelligence, 26(5-6):1575–
1587, 2013.

2. Baher Abdulhai, Rob Pringle, and Grigoris J Karakoulas. Reinforcement learning for true
adaptive traffic signal control. Journal of Transportation Engineering, 129(3):278–285,
2003.

3. Mohammad Al-Zinati and Rym Zalila-Wenkstern. Matisse 2.0: A large-scale multi-agent
simulation system for agent-based its. In Web Intelligence and Intelligent Agent Tech-
nology (WI-IAT), 2015 IEEE/WIC/ACM International Conference on, volume 2, pages
328–335. IEEE, 2015.

4. Kevin N Balke and Curtis Herrick. Potential measures of assessing signal timing perfor-
mance using existing technologies. Technical Report FHWA/TX-04/0-4422-1, Texas A&M
Transportation Institute, College Station, Texas 77843-3135, July 2004.

5. Ana LC Bazzan. A distributed approach for coordination of traffic signal agents. Au-
tonomous Agents and Multi-Agent Systems, 10(1):131–164, 2005.

6. Ana LC Bazzan, Denise de Oliveira, and Bruno C da Silva. Learning in groups of traffic
signals. Engineering Applications of Artificial Intelligence, 23(4):560–568, 2010.

7. Yunrui Bi, Dipti Srinivasan, Xiaobo Lu, Zhe Sun, and Weili Zeng. Type-2 fuzzy multi-
intersection traffic signal control with differential evolution optimization. Expert Systems
with Applications, 41(16):7338–7349, 2014.

8. Kuei-Hsiang Chao, Ren-Hao Lee, and Meng-Hui Wang. An intelligent traffic light con-
trol based on extension neural network. In Knowledge-based intelligent information and
engineering systems, pages 17–24. Springer, 2008.

9. Shih-Fen Cheng, Marina A Epelman, and Robert L Smith. Cosign: A parallel algorithm
for coordinated traffic signal control. IEEE Transactions on Intelligent Transportation
Systems, 7(4):551–564, 2006.

10. Yit Kwong Chin, Lai Kuan Lee, Nurmin Bolong, Soo Siang Yang, and Kenneth Tze Kin
Teo. Exploring q-learning optimization in traffic signal timing plan management. In 2011
Third International Conference on Computational Intelligence, Communication Systems
and Networks, pages 269–274. IEEE, 2011.

11. Mario Collotta, Lucia Lo Bello, and Giovanni Pau. A novel approach for dynamic traffic
lights management based on wireless sensor networks and multiple fuzzy logic controllers.
Expert Systems with Applications, 42(13):5403–5415, 2015.

12. Christina Diakaki, Markos Papageorgiou, and Kostas Aboudolas. A multivariable regulator
approach to traffic-responsive network-wide signal control. Control Engineering Practice,
10(2):183–195, 2002.

13. Ivana Dusparic and Vinny Cahill. Autonomic multi-policy optimization in pervasive sys-
tems: Overview and evaluation. ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 7(1):11, 2012.

14. Ivana Dusparic, Julien Monteil, and Vinny Cahill. Towards autonomic urban traffic con-
trol with collaborative multi-policy reinforcement learning. In Intelligent Transportation
Systems (ITSC), 2016 IEEE 19th International Conference on, pages 2065–2070. IEEE,
2016.

26 Behnam Torabi et al.

15. Samah El-Tantawy and Baher Abdulhai. An agent-based learning towards decentralized
and coordinated traffic signal control. In Intelligent Transportation Systems (ITSC), 2010
13th International IEEE Conference on, pages 665–670. IEEE, 2010.

16. Samah El-Tantawy, Baher Abdulhai, and Hossam Abdelgawad. Multiagent reinforcement
learning for integrated network of adaptive traffic signal controllers (marlin-atsc): method-
ology and large-scale application on downtown toronto. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1140–1150, 2013.

17. John France and Ali A Ghorbani. A multiagent system for optimizing urban traffic. In In
Proceedings of the IEEE/WIC International Conference on Intelligent Agent Technology,
pages 411–414. IEEE, 2003.

18. Nathan H Gartner, Farhad J Pooran, and Christina M Andrews. Implementation of the
opac adaptive control strategy in a traffic signal network. In Intelligent Transportation
Systems, 2001. Proceedings. 2001 IEEE, pages 195–200. IEEE, 2001.

19. Rick Goldstein and Stephen F Smith. Expressive real-time intersection scheduling. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

20. PTV Group. Ptv vissim. http://vision-traffic.ptvgroup.com/en-us/products/ptvvissim/.
Accessed October 2018.

21. Jean-Jacques Henry, Jean Loup Farges, and J Tuffal. The prodyn real time traffic algo-
rithm. IFAC Proceedings Volumes, 16(4):305–310, 1983.

22. Hsu-Chieh Hu and Stephen F Smith. Bi-directional information exchange in decentralized
schedule-driven traffic control. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 1962–1964. International Foundation
for Autonomous Agents and Multiagent Systems, 2018.

23. Peter Koonce et al. Traffic signal timing manual. Technical report, United States. Federal
Highway Administration, 2008.

24. UK’s Transport Research Laboratory. Split cycle and offset optimisation technique.
https://trlsoftware.co.uk/products/traffic control/scoot. Accessed October 2018.

25. UK’s Transport Research Laboratory. Traffic network and isolated intersection study
tool. https://trlsoftware.co.uk/products/junction signal design/transyt. Accessed Octo-
ber 2018.

26. Shoufeng Lu, Ximin Liu, and Shiqiang Dai. Incremental multistep q-learning for adaptive
traffic signal control based on delay minimization strategy. In Intelligent Control and
Automation, 2008. WCICA 2008. 7th World Congress on, pages 2854–2858. IEEE, 2008.

27. Patrick Mannion, Jim Duggan, and Enda Howley. Parallel reinforcement learning for
traffic signal control. volume 52, pages 956–961. Elsevier, 2015.

28. Pitu Mirchandani and Larry Head. A real-time traffic signal control system: architec-
ture, algorithms, and analysis. Transportation Research Part C: Emerging Technologies,
9(6):415–432, 2001.

29. Markos Papageorgiou, Christina Diakaki, Vaya Dinopoulou, Apostolos Kotsialos, and Yib-
ing Wang. Review of road traffic control strategies. Proceedings of the IEEE, 91(12):2043–
2067, 2003.

30. Tong Thanh Pham, Tim Brys, Matthew E Taylor, Tim Brys, Madalina M Drugan,
PA Bosman, Martine-De Cock, Cosmin Lazar, L Demarchi, David Steenhoff, et al. Learn-
ing coordinated traffic light control. In Proceedings of the Adaptive and Learning Agents
workshop (at AAMAS-13), volume 10, pages 1196–1201. IEEE, 2013.

31. KJ Prabuchandran, Hemanth Kumar AN, and Shalabh Bhatnagar. Multi-agent reinforce-
ment learning for traffic signal control. In Intelligent Transportation Systems (ITSC),
2014 IEEE 17th International Conference on, pages 2529–2534. IEEE, 2014.

32. Silvia Richter. Learning traffic control-towards practical traffic control using policy gradi-
ents. Albert-Ludwigs-Universitat Freiburg, Tech. Rep, 2006.

33. Roads and Maritime Services. Scats: The benchmark in urban traffic control.
http://www.scats.com.au/. Accessed October 2018.

34. Danko A Roozemond. Using intelligent agents for pro-active, real-time urban intersection
control. European Journal of Operational Research, 131(2):293–301, 2001.

35. Stephen F Smith, Gregory J Barlow, Xiao-Feng Xie, and Zachary B Rubinstein. Smart
urban signal networks: Initial application of the surtrac adaptive traffic signal control sys-
tem. In Twenty-Third International Conference on Automated Planning and Scheduling,
2013.

36. Dipti Srinivasan, Min Chee Choy, and Ruey Long Cheu. Neural networks for real-time
traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 7(3):261–
272, 2006.

Title Suppressed Due to Excessive Length 27

37. Behnam Torabi. A self-organizing traffic management system and its real-world imple-
mentation, ph.d. proposal. Technical report, University of Texas at Dallas, October 2017.

38. Behnam Torabi, Mohammad Al-Zinati, and Rym Z Wenkstern. MATISSE 3.0: A Large-
Scale Multi-agent Simulation System for Intelligent Transportation Systems. In Proceed-
ings of the 16th International Conference on Practical Applications of Agents and Multi-
Agent Systems, PAAMS 18, pages 357–360, Toledo, Spain, June 2018.

39. Behnam Torabi, Rym Z Wenkstern, and Mohammad Al-Zinati. An Agent-Based Micro-
Simulator for ITS. In Proceedings of the 21st IEEE International Conference on Intelligent
Transportation Systems, IEEE ITSC 2018, Maui, Hawaii, USA, November 2018.

40. Behnam Torabi, Rym Z Wenkstern, and Robert Saylor. A Collaborative Agent-Based
Traffic Signal System For Highly Dynamic Traffic Conditions. In Proceedings of the 21st
IEEE International Conference on Intelligent Transportation Systems, IEEE ITSC 2018,
Maui, Hawaii, USA, November 2018.

41. Behnam Torabi, Rym Z Wenkstern, and Robert Saylor. A Multi-Hop Agent-Based Traffic
Signal Timing System for the City of Richardson. In Proceedings of the The Sixteenth
International Conference on Autonomous Agent and Multiagent Systems, AAMAS 2018,
pages 2094–2096, Stockholm, Sweden, July 2018.

42. Kaige Wen, Shiru Qu, and Yumei Zhang. A stochastic adaptive control model for isolated
intersections. In Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International
Conference on, pages 2256–2260. IEEE, 2007.

43. Xiao-Feng Xie, Stephen F Smith, Ting-Wei Chen, and Gregory J Barlow. Real-time traffic
control for sustainable urban living. In 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), pages 1863–1868. IEEE, 2014.

